

NGOP Users Guide

Version 2.1
Februrary 25, 2003

J. Fromm
K. Genser
T. Levshina
M. Mengel
V. Podstavkov

 2

Chapter 1: Introduction..6
Chapter 2: Requirements..9
Chapter 3: NGOP Terminology ...10

3.1 Host ..10
3.2 Cluster ..10
3.3 Monitored Element ..10
3.4 System..10
3.5 System View ..10
3.6 Monitored Object ...10
3.7 Monitoring Agent...10
3.8 State..10
3.9 Severity Level ..11
3.10 Event ..11
3.11 Status..11
3.12 Status Rules..11
3.13 Action...11

Chapter 4: Common Configuration Language...12
4.1 Expansion Mechanism: <For > tag...12

Example: ..12
Example: ..13

4.2 Expression <appl y> tag..13
4.2.1: Examples..14
4.3 System <Syst em> tag..15

Example: ..15
4.4 Monitored Element <Moni t or edEl ement > tag...15

Example: ..16
4.5 Action <Act i on> tag...16
4.6 Conditional Mechanism: <I f > tag ...17

Chapter 5: NGOP Central Server...18
5.1 NCS Overview...18
5.2 NCS Starting/Stopping...18
5.3 NCS Configuration ..18

Chapter 6: Locator Server ..20
6.1 Locator Server Overview ...20
6.2 Locator Server Starting/Stopping...20
6.3 Locator Server Configuration ..20

Chapter 7: Status Engine..21
7.1 Status Engine...21
7.2 Status Engine Starting/Stopping..21
7.3 Status Engine Configuration..21
7.4 Default Configuration Files...22

7.4.1 File service_class.xml ...23
7.4.2 File host s_i n_cl ust er s. xml ...24

 3

7.4.3 File kn_st . xml ..25
7.5 NGOP Hierarchy Definition ..25

7.5.1 System View ...26
7.5.2 System...27
7.5.3 Monitored Element ...27

7.6 Status Rule Sets ...27
7.6.1 Dependent List ..28
7.6.2 Rule...29
7.6.3 Generic Rule Example..30
7.6.4 Dependent Rule...31

Chapter 8: Status Engine API ..32
8.1 Constructor SEClient ...32
8.2 bye() ...33
8.3 TreeGetRoot() ..33
8.4 TreeGetKids() ..33
8.5 GetLastHeard()...33
7.6 GetUpdateRequest()...34
8.7 GetStatus() ...34
8.8 GetKnownStatus()..34
8.9 GetServiceType() ...34
8.10 GetSevLevel() ..35
8.11 GetState() ...35
8.12 GetColor() ..35
8.13 GetType() ...35
8.14 GetIcon() ..36
8.15 GetHistory() ...36
8.16 GetPendingAction(): ..36
8.17 HandlePendingAction() ...36
8.18 AckHistory() ..37

8.18 Python Example of Status Engine Client...37
Chapter 9: Apache/FCGI ...38
Chapter 10: Web Based Monitor ...38

10.1 Signing On...39
10.2 Monitor ..39
10.2 Standalone Web Monitor Starting/Stopping..42

Chapter 11: Java Based Monitor..42
11.1 Java Monitor Starting/Stopping...42
11.2 Monitor Overview..43

Chapter 12: Configuration File Manager ...44
12.1 Librarian...44
12.2 Indexer ...44
12.3 Broker ..44
12.4 CFMS Configuration File..44
12.5 CFMS Starting/Stopping..45

 4

12.6 Administrative Client...45
12.7 Admin Starting/Stopping...46

Chapter 13: Archive Server..47
13.1 Archive Server Overview...47
13.2 Archive Server Starting/Stopping..47
13.3: Archiver Configuration...47

Chapter 14: Monitoring Agents...48
14.1: Overview...48
14.2 Plugin Agent ..48
14.2.1 Starting/Stopping Plugins Agent...52
14.3 Ping Agent ...52
14.3.1 Ping Agent Starting/Stopping ...57
14.4 Swatch Agents ...57
14.4.1 Starting/Stopping Swatch Agent...58
14.5 URL Agent...59
14.6 Monitoring Agent API ...60
14.6.1: API Description ...60
14.6.1.1: MACl i ent Class..61
14.6.1.2: MACl i ent methods...61
14.6.2: MA API Example..63
14.6.3 Starting/Stopping Your Agent ..65

Chapter 15: Action Server ...65
15.1 Action Server Configuration File...65
15.2 Starting/Stopping Action Server ..66
15.3 File aut hor i zed. xml ...66
15.4 File act i on. xml ..67

Chapter 16: Controlling the NGOP Daemons ...68
16.1: The / var / ngop Directory. ..68
16.2 Starting the Agents...68
16.3 Monitoring the Agents...68
16.4 Stopping the Agents...69
16.5 Disabling/Enabling Agents..69
16.6 Controlling Agents on Remote Hosts..70
16.7 Starting/Stopping Individual Agents..70

Appendix A ..71
<For> DTD ..71
<Apply> DTD..71
<Action> DTD...71
<If> DTD ...71
NCS Configuration File DTD..72
Locator Server DTD...72
Status Engine Configuration File DTD..73
PlugIns Agent DTD ...74
Ping Agent DTD ..74

 5

Swatch Agent DTD..75
URL Agent DTD..77
<Default_File> DTD..78
Monitored Hierarchy DTD...79
<StatusRulesSet> DTD..79
Web Gui DTD...80
Java Monitor DTD..80
CFMS Configuration File DTD...80
Archiver Configuration File DTD..81
Action Server Configuration File DTD ...81
<Authorization_File> DTD ...81
<Action_File> DTD...82

 6

Chapter 1: Introduction
NGOP is a distributed monitoring system that provides active monitoring of software and hardware,
customizable service-level reporting, early error detection, and problem prevention. NGOP provides
persistent storage of collected data and is capable of executing corrective actions and sending notifications.
NGOP is a framework for developing monitoring tools.

The target audience for this document is wide ranging. It is intended that users will go directly to chapters
that interest them, rather than reading the document from cover to cover. Below is brief description of each
chapter, and who should read it.

Chapter Description Intended Audience
1 Introduction All users
2 Requirements Any user installing an NGOP component.
3 Terminology All users

4 Common Configuration
Language

Users intending to write their own configuration files.

5 NGOP Central Server Users responsible for administration of the NGOP Central
Server

6 Locator Server Users responsible for administration of the NGOP Central
Server.

7 –8 Status Engine Users responsible for administration of the NGOP Central
Server. User inteding to write thier own hierarchy
configuration and status rules

9 Apache/fcgi

10 NGOP Web Monitor Users intending to monitor components with NGOP. Users
who are not interested in installing and setting up the
monitor can read sections 6.1 – 6.4

11 NGOP Java Monitor Users intending to monitor components with NGOP using
standalone Java GUI.

12 Configuration File Manager Anyone responsible for administration of the Configuration
File Manager

13 Archive Server Anyone responsible for administration of the Archive
Server.

14 Monitoring Agents Anyone that wishes to write their own monitoring agent, or
is responsible for starting and stopping the agents on a
machine.

15 Action Servers Anyone responsible for writing and starting/stopping
Action Servers.

16 Controlling the NGOP
Daemons

Persons responsible for setting up, administrating, or
installing NGOP components.

NGOP uses a centralized collection scheme. The NGOP central server (NCS) collects and stores
information from various monitoring agents running on remote machines. The NCS is passive, simply
listening for messages from the monitoring agents which communicate with the NCS using a well-defined
protocol. NGOP provides a “plug-in” monitoring agent, which is a template that is used to easily create
monitoring agents for many common tasks. A full API is also provided allowing users to create any type of
monitoring agent.

 7

Typically, a monitoring agent will monitor a piece of hardware or software and generate alarms and events
to the NCS when appropriate. For example, a monitoring agent could be written to look for the presence of
an important daemon and report when the daemon has died to the NCS.

The Archive Server is a component of NGOP that provides persistent storage. The NCS forwards all
messages received from monitoring agents to the Archive Server. The Archive Server stores the messages
in an Oracle database, and also provides a web based report generator as well as maintaining the database
(rolling old records out to minimize the overhead for example).

The Configuration Server is the component that handles all of the configuration files in NGOP. The
configuration files are written using XML.

The Status Engine is the component that collects selected information from the NCS and processes it
according to the specific rules. The Status Engine specific hierarchy configuration and rules are store in
configuration files. Although the NCS is collecting information from potentially many systems, the Status
Engine can susbscribe to receive date about a subset of the clusters being monitored. Multiple Status
Engines can be running simulteneously each configured in such a way that refelects interested of one
particular group of people (role). For example, an operations staff interested in the overall service of a
system has a different view than a systems administrator who is interested in every detail. To the operations
staff, having 80% of the cluster available is sufficient to provide the service, therefore they want their
monitor to tell them the system is fine. The systems administrator wants to know when anything has
happened in the cluster.
A full API is provided allowing users to retrieve information about a particular monitored object.

The Location Server is the component that registers various Status Engines and provides users with
information that is used to connect with a particular Status Engine.

Information from the NGOP system is made available through the NGOP Web Monitor or NGOP Java
Monitor.

Below is a pictorial view of the entire NGOP system:

 8

See Chapter 3 for definitions of terminology.

 9

Chapter 2: Requirements
This chapter discusses the various system requirements of various components of the NGOP system. Below
is a table listing the subsystems, whether they are required for a complete NGOP system, which platforms
they are available on, the requirements, and the number of instances of that subsystem that may be running.
Please note that this table is a requirement for an entire NGOP system, and does not mean that each user
needs to install these subsystems to begin viewing data.

Subsystem Name Required/

Optional
Available on
Platforms

Requirements Number
of
Instances

NCS Required Linux python 2_1 and higher
fcslib v2_0 and higher

1

CFMS Broker
/Indexer
Admin GUI

Optional Linux python 2_1 built with tcl/tk support
module (optional)
cvs
tcl v8_0_2, tkv8_0_2 (opt)
blt v2_3, xed b1_0(opt)

1

Locator Server Required Linux python 2_1 and higher
fcslib v2_0 and higher

1

Status Engine Required Linux python 2_1 and higher
fcslib v2_0 and higher

N

Web Service Requiered Linux python 2_1 and higher
fcslib v2_0 and higher
apache & f cgi
imagemagick v4_0

1

Archiver Optional Linux, IRIX,
SunOS

python 2_1 and higher
dcoracle python package
(available from ups as
python_dcoracle)
Oracle client license
Shared file space for message
requests.

1

Action Server Optional Linux python 2_1 and higher N
Monitoring Agents
 (PluginsSwatch
 MA Api Ping)

Required Linux, OSF1,
SunOS, IRIX

python 2_1and higher

N

Java Monitor Optional Linux, SunOS Java 1.4.0 N

In order to have a complete NGOP system, a NGOP Central Server must be installed on one machine. To
do anything usefull, monitoring agents will be required to monitor something, at least one status engine and
monitoring web service have to be running in order to view events and alarms taking place in the system. It
is possible to have more than one NGOP system, but the typical setup (here at FNAL for example) is to
have one central machine that runs a site-wide NGOP.

The “Number of nodes” column refers to the number of instances that are installed to make up an NGOP
system. The rows that list N simply indicate that there may be more than one of those subsystems installed
in the same NGOP system. For example, there will be many monitoring agents intalled for a given NGOP
system, but only one central server.

 10

Chapter 3: NGOP Terminology
This chapter describes the terminology used when discussing the NGOP system.

3.1 Host
A Host is a computer or an entity with an assigned IP address, identified by its name.

3.2 Cluster
A Cluster is a collection of Hosts that have a common usage or purpose. Clusters may overlap. A Cluster
may consist of only one Host. A Cluster is uniquely identified by its name.

3.3 Monitored Element
A Monitored Element (ME) is an atomic entity that is monitored by NGOP. It has a well-defined behavior,
which is characterized by its state and is associated with some quantitative measurements. This entity is
derived from several parts; each of them contributing to the overall State of the monitored element. A ME is
located on a particular Host and belongs to a particular System. Each ME has a unique id that consists of
the ME name, the Host name, the System name and the Cluster name. (Examples of Monitored Element:
file system, tape drive, system daemon, and memory utilization.)

3.4 System
A System is a set of software components (ME) that are logically integrated into one unit monitored by
NGOP. A System is defined on a Cluster and may be distributed across multiple Hosts. It is characterized
by its State and Status. A System has a unique id that consists of the System name and the Cluster name.
(Examples: LSF Batch , OS “Health” System that could contain system daemons, critical file systems, etc.)

3.5 System View
A System View is a logical collection of Systems, Monitored Elements and System Views. A System View
is created by a user/administrator in order to create hierarchical structure in the NGOP Monitor. It is
characterized by its Status.

3.6 Monitored Object
A Monitored Object is a System or a ME monitored by NGOP.

3.7 Monitoring Agent
A software component that monitors a particular component of the system, reporting it’s status to the NGOP
Central Server. Monitoring Agents are often abbreviated with MA.

3.8 State
A State is a characteristic of a Monitored Object defined by either a Monitoring Agent, or the NCS. A
Monitored Object could be in four different states:

• 1 (Up) - the Monitored Object is operational
• 0 (Down) - the Monitored Object is not operational

 11

• -1 (Undefined) - NGOP was not able to determine the state of the monitored element. This is
usually set by the NCS when no information has been obtained about this object since the
NCS had started.

• -2 (Unknown) - NGOP failed to determine the current state of the monitored element but was
able to do it earlier. This is set by the NCS when the connection with the MA has been lost.
This state indicates that at some point the NCS was communicating with the MA.

3.9 Severity Level
A Severity Level is a characteristic of an event defined by a MA. It could assume the integer values from 0 -
“OK“ to 6 – “Bad” . It is used to describe events when the monitored object is still operational, but a change
in the monitored object’s behavior or quantitative characteristics could indicate a potential problem. The
severity level of the occurred event is redefined by the status rule in the NGOP Monitor configuration.

3.10 Event
Events are generated by MAs and describe a detected condition. An Event includes the following fields:

• System name
• Cluster name
• Monitored Element name
• Host name
• Date/Time
• Event Name (an aspect of the monitored element that contributed to event initiation).
• Event Value (the current measurements that are associated with that aspect of the monitored

element).
• State
• Severity Level
• Source – the id of the Monitoring Agent (MA_name.host)
• Description (human readable explanation of the occurred event)

3.11 Status
A Status is a characteristic of a Monitored Object or System View defined by the NGOP Monitor based on
the Status Rules and events. A Status of a monitored object/system view may assume the following values:
“Good” , “NotInService” , “Undefined” , “Unknown” , “Warning” , “Error” , “Bad” . Status defines the color of
the icons that represents system views or monitored objects in the monitor.

3.12 Status Rules
Status Rules are a set of rules defined by a user/administrator that are used by the NGOP Monitor to
determine the Status of the Monitored Objects and System Views.

3.13 Action
Actions are associated with monitored objects. An event could trigger the NGOP application to send the
request to the NCS to perform an action. NGOP generates zero or more actions depending on the event,
NGOP configuration, current day/time, and requester’s authorization. Examples of Actions are:

• Display a message on the Operator console
• Send an e-mail message
• Send a message to a pager
• Run a script

 12

Chapter 4: Common Configuration Language
This chapter describes the NGOP configuration language that allows the creation of hierarchies of
monitored components, describes rules to determine the status of components, and defines when and what
kind of actions should be performed. The NGOP configuration language provides a framework for creating
monitoring tools (“PlugIns” , “Swatch” Monitoring Agents).

The following have been defined in the NGOP configuration language:

• <For> - a looping mechanism
• <apply> - Defines a mathematical expression
• <System> - Defines and NGOP system.
• <MonitoredElement> - Defines an NGOP Monitored Element.
• <Action> - Defines an action to be taken when a condition is met.
• <If> - Defines a conditional.

Each of these are discussed in detail in the section below.

The NGOP configuration files are stored in a central repository. All NGOP configuration files are written in
XML. XML stands for eXtensible Markup Language (see http://www.w3.org/XML for details). XML
makes use of tags (words bracketed by ‘<’ and ‘>’) and attributes (of the form name=” val ue”). XML
uses the tags only to delimit pieces of data, and leaves the interpretation of the data completely to the
application that reads it. All configuration files should conform to a corresponding DTD (Document Type
Definition). A DTD is a set of rules for constructing valid XML documents.

4.1 Expansion Mechanism: <For> tag
The NGOP applications (such as NGOP Monitor, CFMS, PlugIns and Swatch Agent) use an expansion
mechanism that allows the replication of a particular fragment of an XML document. This fragment refers
to a hierarchy and is repeated for every element of this hierarchy. The hierarchy should be defined in the
same XML document, or in some other XML documents referred to by name. The hierarchy consists of
XML tags where each tag has at least one attribute: Name. There is just one outermost tag of hierarchy. This
tag contains multiple tags that could be the same. This XML fragment should conform to the DTD rules.

Example:
This is a hierarchy of <Cluster> tags that contains <Host> and other <Cluster> tags . This particular
example defines a cluster called “CDFFarm” which is composed of two other systems, CDFFar mI O and
CDFFar mWor ker . CDFFarmIO consists of the host cdffarm1, while CDFFarmWorker consists of the
nodes fncdf1, fncdf2, ... , fncdf90.

<Cl ust er Name=” CDFFar m” >
 <Cl ust er Name=” CDFFar mI O” >
 <Host Name=” cdf f ar m1” / >
 </ Cl ust er >
 <Cl ust er Name=” CDFFar mWor ker ” >

<Host Name=” f ncdf 1” / >

.
 .
 .

<Host Name=” f ncdf 90” / >
 </ Cl ust er >
</ Cl ust er >

 13

Each fragment of the XML document that needs to be replicated should be placed within <For > </ For >
tags. A <For > tag has the following attributes:

• Each (required) – refers to the child element within the hierarchy
• Var (required) – name of the variable that will be replaced every time when this name is

encountered in the XML construction; Var =” { %Pl aceHol der } ”
• I n (required) – refers to the parent element
• Name (required) – refers to the attribute Name of the particular parent element
• Fi l ename (optional) – the name of the file where the hierarchy is described

Example:

<For Each=” Host ” Var =” { %Host } ” I n=” Cl ust er ” Name=” CDFFar m”
Fi l ename=“ CDFFar mCl ust er . xml “ >
 <Syst em Name=” OSHeal t h“ Cl ust er = “ { %Host } ” >
 <Moni t or edEl ement Name=” ypbi nd” Host =” { %Host } “ Type=” Daemon“ / >
 <Moni t or edEl ement Name=” sysl ogd” Host =” { %Host } “ Type=” Daemon“ / >
 </ Syst em>
</ For >

The fragment of the XML document will be repeated for every Host tag within the Cl ust er tag with
attribute Name=” CDFFar m” . These tags are listed in the file CDFFar mCl ust er . xml . The values of
the Cl ust er attribute of a <Syst em> tag and the Host attribute of a <Moni t or edEl ement > tag will
be replaced with the corresponding value of the { %Host } variable. The resulting configuration will look
like:

<Syst em Cl ust er =” cdf f ar m1” Name=” OSHeal t h” >
 <Moni t or edEl ement Host =” cdf f ar m1” Name=” ypbi nd” Type=” Daemon” / >
 <Moni t or edEl ement Host =” cdf f ar m1” Name=” sysl ogd” Type=” Daemon” / >
</ Syst em>
<Syst em Cl ust er =” f ncdf 1” Name=” OSHeal t h” >
 <Moni t or edEl ement Host =” f ncdf 1” Name=” ypbi nd” Type=” Daemon” / >
 <Moni t or edEl ement Host =” f ncdf 1” Name=” sysl ogd” Type=” Daemon” / >
</ Syst em>
.
.
.
<Syst em Cl ust er =” f ncdf 90” Name=” OSHeal t h” >
<Moni t or edEl ement Host =” f ncdf 90” Name=” ypbi nd” Type=” Daemon” / >
<Moni t or edEl ement Host =” f ncdf 90” Name=” sysl ogd” Type=” Daemon” / >
</ Syst em>

4.2 Expression <apply> tag
An <appl y> tag defines a mathematical expression (“ logical brackets” - see MathML for details). This
expression is evaluated by the NGOP applications and if it is true some specific operations are carried out
by the applications. For example, if at some point an expression, defined within a <Condi t i on> tag in a
PlugIns agent configuration file becomes true, an agent will generate an event; if an expression within a
<Gener i cRul e> tag becomes true, the NGOP Monitor will apply this rule to define the status of the
monitored object associated with this rule.

An <apply> tag can contain other <appl y> tags. It also could contain logical operators (<and>,
<or >, <eq>, <neq>, <l t >, <l eq>, <gt >, <geq>, <i n>, <not i n>.) or functions
(<pl us>, <t i mes>, <mi nus>, <di v i de>, <sum>, <mi n>, <max>). An <appl y> element
includes a number token element (<cn>) and identifier token element (<ci >) . One of the operators or
functions should be the first element within <appl y> tag.

This XML fragment should conform to the DTD rules.

 14

4.2.1: Examples
Example 1
Evaluate the following expression:
2y+ 4x + 1> 3z.
<appl y>
 <gt / >
 <appl y>
 <pl us/ >
 <appl y>
 <t i mes/ >
 <ci >y</ ci >
 <cn>2</ cn>
 </ appl y>
 <! —2y- - ! >
 <appl y>
 <t i mes/ >
 <cn>4</ cn>
 <ci >x</ ci >
 </ appl y>
 <! —4x- - ! >
 <cn>1</ cn>
</ appl y>
<! —2y+4x+1- - ! >
 <appl y>
 <t i mes/ >
 <cn>3</ cn>
 <ci >z</ ci >
</ appl y>
<! —3z- - ! >
</ appl y>
<! - - 2y+4x+1>3z - - >

The <sum>, <mi n> and <max> tags should have the following construction:
<sum>
 <bvar >i </ bvar >
 <l owl i mi t > <cn>N1</ cn> </ l owl i mi t >
 <upl i mi t > <cn>N2</ cn> </ upl i mi t >
 <ci >el ement [i] </ ci >
</ sum>

This represents the following expression:

Ν2

Σ (element[i])=element[N1]+….element[N2]
i=N1

Example 2
<appl y>
<gt / >
 <appl y>
 <sum>
 <bvar >I </ bvar >

<l owl i mi t > <cn>0</ cn> </ l owl i mi t >
 <upl i mi t > <cn>10</ cn> </ upl i mi t >
 <ci >el ement [i] </ ci >
 </ sum>
 <appl y/ >
 <cn>20</ cn>
</ appl y>

This defines the following expression:

10

 15

Σ (element[i])>20

i=0

4.3 System <System> tag
A <system> tag uniquely defines an NGOP system by the two tuple:

(System_Name,Cluster_Name)

A <Syst em> tag indicates the beginning of the system definition and requires two attributes:
Name – defines the system name
Cluster - defines the cluster name for this system

A <Syst em> tag contains multiple <MonitoredElement> tags.
This XML fragment should conform to the DTD rules.

Example:
<Syst em Name=” OSHeal t h” Cl ust er =” Fnal u” / >

This defines the system “OsHealth.Fnalu” . The <For > tag is used to define multiple systems:

<Uni x Name=” Uni xFl avor ” >
 <Fl avor Name=” I r i x” / >
 <Fl avor Name=” Sol ar i s” / >
 <Fl avor Name=” OSF1” / >
 <Fl avor Name=” Li nux” / >
</ Uni x>
<For Each=” Fl avor ” Var =” { %F} ” I n=” Uni x” Name=” Uni xFl avor ” >
 <Syst em Name=” OSHeal t h_{ %F} ” Cl ust er =” Fnal u” / >
</ For >

The code above is equivalent to the following XML fragment:

<Syst em Name=” OSHeal t h_I r i x” Cl ust er =” Fnal u” / >
<Syst em Name=” OSHeal t h_Sol ar i s” Cl ust er =” Fnal u” / >
<Syst em Name=” OSHeal t h_OSF1” Cl ust er =” Fnal u” / >
<Syst em Name=” OSHeal t h_Li ni x” Cl ust er =” Fnal u” / >

4.4 Monitored Element <MonitoredElement> tag
A <MonitoredElement> uniquely defines an NGOP monitored element by the four tuple:

(ME_Name,Host_Name,System_Name,Cluster_Name)

A <Moni t or edEl ement > tag can be encountered only within a <Syst em> tag. It has the following
required attributes:

Name – defines the monitored element name
Host – defines the physical location of monitored element. (Instances of “ l ocal host ” in this value

will be replaced by the local host name in MA.)
Type – defines the type of monitored element (see Event for details)

This XML fragment should conform to the DTD rules.

 16

Example:
<Syst em Name=” OSHeal t h” Cl ust er =” Fnal u” >
 <Moni t or edEl ement Name=” cpuLoad” Host =” f nsf o” Type=” sysUsage” / >
</ Syst em>

This defines the monitored element with i d=”cpuLoad. f nsf o. OSHeal t h. Fnal u” and
t ype=” sysUsage” .

The <For > tag is used to define multiple monitored elements:
<Li st Name=” Scr at ch” >
 <I t em Name=” 1” / >
 <I t em Name=” 2” / >
 <I t em Name=” 3” / >
</ Li st >
<Syst em Name=” OSHeal t h_I r i x” Cl ust er =” Fnal u” >
 <For Each=” I t em” Var =” { %I } ” I n=” Li st ” Name=” Scr at ch” >
 <Moni t or edEl ement Name=” / l ocal / st age_{ %I } ” Host =” f nsf o” Type=” f i l eSyst em” / >
 </ For >
</ Syst em>

The above code fragment is equivalent to the following XML code fragment:
<Syst em Name=” OSHeal t h_I r i x” Cl ust er =” Fnal u” >
 <Moni t or edEl ement Name=” / l ocal / st age_1” Host =” f nsf o” Type=” f i l eSyst em” / >
 <Moni t or edEl ement Name=” / l ocal / st age_2” Host =” f nsf o” Type=” f i l eSyst em” / >
 <Moni t or edEl ement Name=” / l ocal / st age_3” Host =” f nsf o” Type=” f i l eSyst em” / >
</ Syst em>

4.5 Action <Action> tag
An <Act i on> defines an action that is to be taken when a condition is met. Several optional attributes
may be provided as well:

Met hod - perform a manual or automatic action (default method is automatic)
Type - execute an action locally or send request to NCS (default type is local)
Gap - time (sec) before attempt to repeat the same action in case of reoccurrence of the same event
Count er - the threshold that allows to generate an action if the number of ocurrences of the same

event exceeded this threshold within Gap period
Delay – time (sec) before attempt to perform an action, it will be executed only if condition still

satisfied.
An <Act i on> contains just one other tag <Exec> that describes actual executable and its arguments in
two required attributes:

Name
Ar gument

Special parameters are included in an argument; these parameters always start with % sign. Every
application has a list of parameters that are used in configuration. This XML fragment should conform to
the DTD rules.

Example

<Act i on I D=” emai l ” Host =” ndem” Type=” cent r al ” Met hod=” aut omat i c” >
 <Exec Name=” send_emai l ” Ar gument =” %Mai l , Somet hi ng_awf ul _j ust _happened! ” / >
</ Act i on>

This defines the action with I D=” emai l ” that should be started automatically on the host ndem. The
arguments that will be passed to the script send_mai l will contain user e-mail address, and some
description.

So far we have discussed the XML constructions that are common to the all NGOP subsystems, now we
will concentrate on XML constructions specific to each module.

 17

4.6 Conditional Mechanism: <If> tag
The <I f > construct is used as a conditional operation in the NGOP. The only attribute is Cond, which
specified the condition. <If>’s can be nested. An optional <El se> tag can be used. For the time being
the value of Cond attribute should consist of variable placeholder “ ’ { %Rol e} ’ ” , logical operarator
(“==” ,” !=”) and role name. This XML fragment should conform to the DTD rules.

Example 1

<I t emLi st Name=” CMS” >

<I t em Name=” CMSPROD” / >
<I f Cond=” ’ { %Rol e} ’ ==’ cmsadmi n’ ” >
<I t em Name=” CMSREF” / >
</ I f >

</ I t emLi st >

Example 2

<I f Cond=” ’ { %Rol e} ’ ! =’ def aul t ’ ” >
 <For Each=” Host ” Var =” { %Host } ” I n=” Cl ust er ” Name=” { %C} Wor ker ”
 Fi l ename=” host s_f i l es/ host sI nCl ust er s. xml ” >
 .
 .
 </ For >
 <El se>
 .
 .
 </ El se>
</ I f >

 18

Chapter 5: NGOP Central Server

This chapter discusses the role of the NGOP Central Server(NCS), how to start and stop it, and it’s
configuration.

5.1 NCS Overview

The NGOP Central Server (NCS) is a process that collects messages from multiple monitoring agents and
provides clients with requested information. In particular, the NCS performs the following tasks:

• Allows for the connection of monitoring agents. The monitoring agents will send events to the
NCS.

• Accepts requests from a monitoring client (Status Engine for example) to provide monitoring
information.

• The monitoring client or agent can instruct the NCS to perform certain actions based on a
condition. For example, Ping Agent can send the request to NCS to send email to the systems
administrator if the node is failing the ping request. The NCS will not perform action iteself, the
action request will be forwarded to the approriate Action Server.

• Forwards all messages sent by monitoring agents to an Archive Server.
• Once a monitoring agent has connected to the NCS, the NCS will note when the monitoring agent

had died. In affect, the NCS monitors the monitoring agents.
• NCS is capable to request adminitsrative action via appropriate Action Server.

5.2 NCS Starting/Stopping
The NCS is started with the other daemons running on a host by issuing the ups st ar t ngop. If UPS is
not installed, then the command ngop st ar t must be issued after the $PATH environment variable has
been set to point to the NGOP directories. This command starts all of the daemons that have configuration
files defined in / var / ngop/ ser ver .

To start only the NCS, the following command must be issued.
ngop st ar t ser ver

or
ngop st ar t “ ngop ser ver –c / var / ngop/ ser ver / ncs. xml ”

Conversely, to stop the NCS issue the following:
ngop st op ser ver

or
ngop st op “ ngop ser ver –c / var / ngop/ ser ver / ncs. xml ”

5.3 NCS Configuration
The NCS configuration file is written using XML. The following is a sample configuration file that is used
as a template:

<?xml ver si on=' 1. 0' ?>
<! DOCTYPE NCS_cf g SYSTEM " ncs. dt d" >
<NCS_cf g DebugLevel =" 6" >
 <NCS TcpPor t =" 19996" UdpPor t =" 19997" / >
 <Cl i ent Por t =" 7001" Host =" l ocal host " Local Log=" l og. l og" Name=" Ar chi ver " / >
 <Tr ust edDomai n>
 <Domai n Name=” f nal . gov” / >

 19

 </ Tr ust edDomai n>
 <Agent Wi ndow=" 5" Tot al MsgNum=" 400" Tot al MsgLengt h=" 100000" Updat eI nt =" 2"
Mi ssedHear t beat =” 3” >
 <Act i on I D=" admi n_act i on" Host =" l ocal host " >
 <Exec Name=" do_somet hi ng" Ar gument =" ar g, %Host , %I D, %Descr i pt i on" / >
 </ Act i on>
 </ Agent >
</ NCS_cf g>

The NCS_cfg tag has one optional attribute that defines debug level output (0 –6) of the NCS log files.
Two log files (cs.out and cs.err) are created automaticaly in ~/Log/cs directory. If directory doesn’ t exist it
will be created. Log files are rotated daily: the old files are moved to “name.timestamp” files.
The NCS tag has two attributes, TcpPor t and UdpPor t . These two values must be assigned an unused
port number, the NCS accepts tcp connection with various clients (e.g. status engines, action) using tcp
port, and gets upd messages from all monitoring agents using udp port.
The NCS can generate request to perform action in case when a monitoring agent has died “ungracefully” or
agent starts “abusing” the system by generating too many messages. The agent related information is
defined by the Agent tag that has fice optional attributes. The first three attributes set the threshold for
“abusive” agent definition: Window - sliding time window (minutes), TotalMsgNumber – maximum
number of messages that can be generated by an agent within the sliding time window and TotalMsgLength
– maximum total length of messages that can be generated by agent within the sliding time window. The
last two attributes : UpdateInt defines the minumal interval between “Update” request and MissedHeartbeat
defines when NCS assumes that agent is dead . In order to perform action the Action tag and Exec tag
should be specified . The Action tag has two attributes ID (action id) and Host (node where Action Server
is running) . The two required attributes of the Exec tag is Name (the name of the executable) and
Argument (the command argument, separated by comma). The following place holder can be substituted
when action is performed:
%ID – will be set to Monitoring Agent id
%Host – will be set to ip address of the node where Monitoring Agent is running
%Description – will be substitue with the following messages:
"New agent has started. NCS will ignore any messages from this Agent! Please kill it immediately!" in case
if the agent with the same id has started on the same host
"Sent N messages total size L during last M min. NCS will ignore any messages from this Agent! Please kill
it immediately!" - in case when agent sent too many messages during short time period.
“ Monitoring Agent is dead!” in case when monitoring agent stop sending heartbeats.
The TrustedDomain tag contains list of the domains that NCS considers as trusted. Only the messages
generated from the agents running on the trusted nodes will be accepted.
The Cl i ent tag is used to locate the host that the archive server is running on and the port that it is
listening on. The final tag in the template is the Local _l og tag, which specifies where the all messages
received from the monitoring agent are to be stored. The default is to store the logging information in the
file l og. l og in the ~/Log/cs. This configuration file should conform to the DTD rules.

 20

Chapter 6: Locator Server

This chapter discusses the role of the Locator Server, how to start and stop it, and it’s configuration.

6.1 Locator Server Overview

The Locator Server is the component that registers various Status Engines and assigns the unique port to
each of them , so they could accept connection from various Monitoring Clients. The Locator Server
provides Clients with information that is used to connect with Status Engine with a specified role .

6.2 Locator Server Starting/Stopping
The Locator Server is started with the other daemons running on a host by issuing the ups st ar t ngop.
If UPS is not installed, then the command ngop st ar t must be issued after the $PATH environment
variable has been set to point to the NGOP directories. This command starts all of the daemons that have
configuration files defined in / var / ngop.

To start only the Locator Server, the following command must be issued.
ngop st ar t l ocat or

or
ngop st ar t “ ngop l ocat or –c / var / ngop/ l ocat or / cf g. xml ”

Conversely, to stop the Locator Server issue the following:
ngop st op l ocat or

or
ngop st op “ ngop l ocat or –c / var / ngop/ l ocat or / cf g. xml ”

6.3 Locator Server Configuration
The Locator Server configuration file is written using XML. The following is a sample configuration file
that is used as a template:

<?xml ver si on=' 1. 0' ?>
<! DOCTYPE LS_cf g SYSTEM " ser ver . dt d" >
<LS_cf g DebugLevel =" 1" >
 <LS I ni t Wai t =" 120" MCPor t =" 3111" SEPor t =" 20000" / >
 </ LS_cf g>

The ls_cfg tag has one optional attribute that defines debug level output (0 –6) of the locator server log
files. Two log files (LS_cfgFile.out and LS_cfgFile.err) are created automaticaly in ~/Log/LS_cfgFile
directory where cfgFile is the name of configuration file. If directory doesn’ t exist it will be created. Log
files are rotated daily: The old files are moved to “name.timestamp” files.
The LS tag has three attributes: InitWait, MCPor t and SEPor t . InitWait attribute defines for how long
(in seconds) the Locator Server is waiting for Status Engines to register on the Locator Server startup.
During this period Locator server doesn’ t accept connections with Monitoring Clients. MC and SE ports
must be assigned the unused port numbers, the Locator Server accepts tcp connection with various Status
Engines (using SEPort) and clients (MCPort) . This configuration file should conform to the DTD rules.
The Locator Server allocates the subsequent port (starting with SEPort+1) to each registered Status Engine.

 21

Chapter 7: Status Engine
This chapter discusses the role of the Status Engine, how to start and stop it, and it’s configuration and
configuration of monitored heirarchy and status rules defined for monitored objects.

7.1 Status Engine
The Status Engine is the component that collects selected information from the NCS and processes it
according to the specific rules. The Status Engine specific hierarchy configuration and rules are stored in
configuration files. Although the NCS is collecting information from potentially many systems, the Status
Engine can susbscribe to receive data about a subset of the systems being monitored. Multiple Status
Engines can be running simulteneously each configured in such a way that refelects interested of one
particular group of people (role). For example, an operations staff interested in the overall service of a
system has a different view than a systems administrator who is interested in every detail. To the operations
staff, having 80% of the cluster available is sufficient to provide the service, therefore they want their
monitor to tell them the system is fine. The systems administrator wants to know when anything has
happened in the cluster. Only one Status Engine could be running for a particular role.
A full API (see chapter) is provided allowing users to retrieve information about a particular monitored
object. Web and Java Monitors are using API as well.

7.2 Status Engine Starting/Stopping
The Status Engines are started with the other daemons running on a host by issuing the ups st ar t
ngop. If UPS is not installed, then the command ngop st ar t must be issued after the $PATH
environment variable has been set to point to the NGOP directories. This command starts all of the
daemons that have configuration files defined in / var / ngop/ st at us_engi ne.

To start only Status Engines, the following command must be issued.
ngop st ar t st at us_engi ne

or if one wants to start the status engine for a particular role the following command must be issued:
ngop st ar t “ ngop st at us_engi ne –c / var / ngop/ st at us_engi ne/ some_r ol e. xml ”

Conversely, to stop the Status Engines issue the following:
ngop st op st at us_engi ne

or
ngop st op “ ngop st at us_engi ne –c / var / ngop/ st at us_engi ne/ some_r ol e. xml ”

7.3 Status Engine Configuration
The Status Engine configuration file is written using XML. The following is a sample configuration file
that is used as a template:
<?xml ver si on=' 1. 0' ?>
<! DOCTYPE st at us_engi ne_cf g SYSTEM " se. dt d" >
<st at us_engi ne_cf g DebugLevel =” 3” >
 <Cl i ent Por t =" 2002" Host =" ngop" Name=" LSCl nt " / >
 <Cl i ent Por t =" 8080" Host =" ngop" Name=" CFMSCl nt " / >
 <Cl i ent Por t =" 19996" Host =" ngop" Name=" NCSCl nt " / >
 <Cf gXml CvsRep=' conf i gxml ' Wr kDi r =' . oper at or '
CvsRoot =' : pser ver : anonymous@ngop. f nal . gov: / home/ ngop/ Reposi t or y ' Rol e="
oper at or " Cf gRoot =" al l Fer mi " / >
 <Tr ust edDomai n>
 <Domai n Name=” f nal . gov” >
 </ Tr ust edDomai n>
 <Cf gEvnt Event Ret ent i onI nt =" 24" WeekendRet ent i onI nt =" 72" WeekendDay=" Fr i "
WeekendSt ar t Ti me=" 17" / >
 <Col or Map>
 <St at us Name=" Good" Col or =" dar kgr een" / >
 <St at us Name=" Not I nSer vi ce" Col or =" #d2d208" / >
 <St at us Name=" Undef i ned" Col or =" gr ay" / >

 22

 <St at us Name=" Unknown" Col or =" bl ack" / >
 <St at us Name=" War ni ng" Col or =" #1670cc" / >
 <St at us Name=" Er r or " Col or =" or ange" / >
 <St at us Name=" Bad" Col or =" r ed" / >
 </ Col or Map>
 <I conMap>
 <Type Name=" Syst emVi ew" I con=" syst emvi ew. gi f " / >
 <Type Name=" Fi l eSyst em" I con=" f ol der . gi f " / >
 <Type Name=" usr Usage" I con=" user s. gi f " / >
 <Type Name=" sysUsage" I con=" cpul oad. gi f " / >
 <Type Name=" memUsage" I con=" memor y. gi f " / >
 <Type Name=" Syst em" I con=" syst em. gi f " / >
 <Type Name=" Daemon" I con=" pr ocess. gi f " / >
 <Type Name=" Har dwar e" I con=" har ddr i ve. gi f " / >
 <Type Name=" Net wor k" I con=" net wor k. gi f " / >
 <Type Name=" Fan" I con=" f an. gi f " / >
 <Type Name=" Temper at ur e" I con=" t emper at ur e. gi f " / >
 <Type Name=" Pr ocessor " I con=" mul t i pr oc. gi f " / >
 <Type Name=" Moni t or edEl ement " I con=" bl ank. gi f " / >
 <Type Name=" webpage" I con=" ht ml . gi f " / >
 </ I conMap>
</ st at us_engi ne_cf g>

The status_engine_cfg tag has one optional attribute that defines debug level output (0 –6) of the status
engine log files. Two log files (StatusEngine_cfgname.out and StatusEngine_cfgname.err) are created
automaticaly in ~/Log/StatusEngine_cfgname directory, where “cfgname” is the name of configuration file.
If directory doesn’ t exist it will be created. Log files are rotated daily: the old files are moved to
“name.timestamp” files.
Status Engine is established permenent tcp connections with the Locator Server, the NCS and optionaly
with the CFMS. The port and host of the corresponding daemon process are specified with the tag “Client”
where attribute “Name” should have corresponding value : LSClnt, NCSClnt or CFMSClnt.

The CfgXml tag defined the location of configuration,status rules and default files (attribute WrkDir) , the
cvs repository and root names (CvsRepository and CvsRoot) , status engine role (“Role”) and root of the
configuration hierarchy (CfgRoot). The cvsRoot attribute should be specified if the configuration should
be downloaded via CFMS from cvs, and cfgRoot should be specified if the hierarchy root has to be
changed.
The TrustedDomain tag contains list of the domains that Status Engine considers as trusted. It handles
pending action only if request to execute/cancel it came from trusted node.
 In order to statrt Status engine without connecting to CFMS, you have to placed all the hierarchy
configuration , status rule and default files (see ...) under the directory wrkDir/cvsRepository.
The CfgEvnt tag defines the storage parameters of all the events, alarm and actions. This tag is optional as
well as all its attributes. The attributes are defined the following:

EventRetentionInt – duration while all the unacknowledged events,alarms and actions will be
stored during weekdays (hours)
 WeekendRetentionInt - duration while all the unacknowledged events,alarms and actions will be
stored during weekends (hours)
WeekendDay – day of the week (“Fri”) when weekend starts
WeekendStartTime – time of the day (hour) when weekend starts

ColorMap and IconMap define available object statuses and types, and provide the mapping between
Statuses and Colors as well as monitored object Types and Icons. This configuration file should conform to
the DTD rules.

7.4 Default Configuration Files
There are several configuration files that contain general information needed for the NGOP Status Engine.
These files include data about “out of service” monitored objects, available service classes, existing hosts
and clusters.

 23

These files will be downloaded into specified configuration area. These are considered the default
configuration files. These files also should be copied into your local area should you choose to create your
own custom configuration. Templates of these files can be found in the directory
$NGOP_DIR/templates/central_configuration/. The name of these files can be anything, but certain naming
conventions have evolved. Common configuration files are discussed next.

7.4.1 File service_class.xml
The service_class.xml configuration file contains information about defined types of service. The service
type is associated with the hosts and monitored objects. By default, a monitored element, located on a host
has the same service type as this host. A service type defines the time period of active monitoring.

This file has the following required declarations and tags:

<?xml ver si on=’ 1. 0’ ?>
<! DOCTYPE NGOPConf i g SYSTEM “ ser vi ce_cl ass. dt d” >
<NGOPConf i g>
<Def aul t _Fi l e/ >
<Ser vi ceCl ass>

……… - def i ni t i on of ser vi ce t ype shoul d be pl aced her e
 </ Ser vi ceCl ass>
</ NGOPConf i g>

A <Ser vi ceCl ass> tag contains definition of the several service types (tag <Ser vi ceType> , such as
“8t o17by5” or “24by7” . The default service type is “24by7” .

A service type is described by a mathematical expression by using an <appl y> tag. If the expression is
evaluated to be false, all events occurred with the corresponding monitored object/host will be ignored.
Within an <appl y> tag, a <ci > tag could assume only two values: hour or day_of _t he_week . Days
of the week are represented by an array of integers, where 0 corresponds to Monday. Hour is represented
by an integer value within 0 – 24 range. This configuration file should conform the to the DTD rules.

Example:

<Ser vi ceType name=” 8t o17by5” >
 <appl y>
 <and/ >
 <appl y>
 <geq/ >
 <ci >hour </ ci >
 <cn>8</ cn>
 </ appl y>
 <! —(hour >=8) - - ! >
 <appl y>
 <l eq/ >
 <ci >hour </ ci >
 <cn>17</ cn>
 </ appl y>
 <! —(hour <=17) - - ! >
 <appl y>
 <not i n/ >
 <ci >day_of _t he_week</ ci >
 <cn>[5, 6] </ cn>
 </ appl y>
 <! —(day_of _t he_week not i n [Sat ur day, Sunday]) - - ! >
 </ appl y>
<! —t hi s j ust means t hat “ 8t o17by5” ser vi ce t ype i s def i ned bet ween 8: 00- 17: 00 ever y day
except Sat ur day and Sunday- - ! >
<! —see appl y f or det ai l s- - ! >
</ Ser vi ceType>

 24

7.4.2 File hosts_in_clusters.xml
The host s_i n_cl ust er s. xml configuration file contains clusters and hosts that exist in the system.
The service type of each host is defined in this configuration. If a service type is not defined, the default
service type is assumed for a host. This file has the following required declaration and tags:

<?xml ver si on=’ 1. 0’ ?>
<! DOCTYPE NGOPConf i g SYSTEM “ host s_i n_cl ust er s. dt d” >
<NGOPConf i g>
<Def aul t _Fi l e/ >
<Host sI nCl ust er s>

……… - known st at us def i ni t i on shoul d be pl aced her e
 </ Host sI nCl ust er s>
</ NGOPConf i g>

A <Host sI nCl ust er s> tag contains multiple <Cl ust er > tags. A <Cl ust er > tag has one required
attribute (Name).

A <Cl ust er > tag contains other <Cl ust er > or <Host > tags. A <Host > tag also has Name as the
only required attribute.

A <Ser vi ceType> tag is placed anywhere within a <Host sI nCl ust er s> tag. It is defined the service
type for all clusters and hosts it contains. A <Ser vi ceType> tag has <Name> as the one required
attribute. Name contains the name of the service type defined in ser vi ce_cl ass. xml .
<Default_File> DTD
This configuration file should conform to the DTD rules.

Example:

<Ser vi ceType Name=” 24by7” >
<Cl ust er Name=” FNALU_BATCH” >
 <Cl ust er Name=” FNALU_BATCH_OSF1” >

<Host Name=” f dei 01” / >
 </ Cl ust er >
 <Cl ust er Name=” FNALU_BATCH_I RI X” >
 <Host Name=” f sgb02” / >
 <Host Name=” f sgb03” / >
 <Host Name=” f sgi 02” / >
 <Host Name=” f sgi 03” / >
 </ Cl ust er >
 <Cl ust er Name=” FNALU_BATCH_Sol ar i s” >
 <Host Name=” f sub01” / >
 <Host Name=” f sui 02” / >
 <Host Name=” f sui 03” / >
 </ Cl ust er >
</ Cl ust er >
</ Ser vi ceType>

This example describes the cluster FNALU_BATCH. It has three sub clusters:

• FNALU_BATCH_I RI X with hosts:
o f sgb02
o f sgb03
o f sgi 02
o f sgi 03

• FNALU_BATCH_OSF1 with host:
o f dei 01

• FNALU_BATCH_Sol ar i s with hosts:
o f sub01
o f sui 02

 25

o f sui 03

All hosts that belong to the FNALU_BATCH cluster require 24by7 maintenance support.

7.4.3 File kn_st.xml
The kn_st . xml (known status) configuration file contains references to the monitored objects or hosts
that are known to be out of service for a significant period of time. A monitored object/host is marked as
“bad” , “ i n r epai r ” or “ t est ” . If a monitored object/host is not listed in this file, its status is
wor ki ng. This file has the following required declaration and tags:

<?xml ver si on=’ 1. 0’ ?>
<! DOCTYPE NGOPConf i g SYSTEM “ known_st at us. dt d” >
<NGOPConf i g>
<KnownSt at us>

……… - known st at us def i ni t i on shoul d be pl aced her e
 </ KnownSt at us>
</ NGOPConf i g>

A <KnownSt at us> tag contains multiple <St at us> tags. A <St at us> tag has one required attribute;
Name, that can assume the values “bad” , “ i n_r epai r ” , or “ t est ” .

You can specify the “out of service” time interval (<Out Of Ser vi ceI nt er val > tag) within the
<St at us> tag. It includes one optional attributes Descr i pt i on, User and the following required
attributes:

St ar t Dat eTi me – “yyyy-mm-dd hh:mm”
EndDat eTi me – “yyyy-mm-dd hh:mm”

Out of service monitored objects and hosts are listed within the corresponding <St at us> tag. This
configuration file should conform to the DTD rules.

Examples:
<St at us Name=” bad” >
 <Host Name=” f npc110” / >
 <Syst em Name=” LSF” Cl ust er =” f sgb02” / >
</ St at us>

This declares host f npc110 and system LSF. f sgb02 to be in a known bad condition.
<St at us Name=” i n_r epai r ” >
 <Out Of Ser vi ceI nt er val St ar t Dat eTi me=” 2001- 05- 01 12: 30” >
 <Syst em Name=” OCS” Cl ust er =” Fi xTar get ” / >
 </ Out Of Ser vi ceI nt er val >
</ St at us>
<St at us Name=” t est ” >
 <Out Of Ser vi ceI nt er val St ar t Dat eTi me=” 2001- 05- 04 08: 30” >
 <Syst em Name=” FBS” Cl ust er =” Movi ngTar get ” / >
 </ Out Of Ser vi ceI nt er val >
</ St at us>

This declares the system OCS. Fi xTar get to be in repair since May 1, 2001 12:30 and host “ fnpc107”
being used for testing purpose weekly from 8 am to 12 pm since May 4, 2001

7.5 NGOP Hierarchy Definition
An NGOP monitored hierarchy consists of system views, systems, and monitored elements. The system and
system view definitions are placed in one or multiple configuration files. The monitored element definitions
should be always placed within the system definition. Every configuration file describing the NGOP
monitored hierarchy has the following required declaration and tags:

 26

<?xml ver si on=’ 1. 0’ ?>
<! DOCTYPE NGOPConf i g SYSTEM “ hi er ar chy. dt d” >
<NGOPConf i g>

……… - def i ni t i on of syst em vi ew, syst em, and moni t or ed el ement s shoul d be pl aced her e
</ NGOPConf i g>

The following XML tags are used to describe the monitored hierarchy:

<Syst emVi ew>
<Syst em>
<Moni t or i ed El ement >

A <For > tag can be used anywhere in the monitored hierarchy definition in order to replicate some XML
fragments.

7.5.1 System View
A System View is uniquely defined by its id. A system view contains only references to the other system
views and monitored objects. (Important: all components of the hierarchy should be defined elsewhere!)

A <Syst emVi ew> tag has the following attributes:

I D (required)
Ref Rul e - a reference to the status rule set, describing the status rules for this system view, the

default value is “SystemViewDefRuleSet”
This configuration file should conform to the DTD rules.

Example 1:
<Syt emVi ew I D=” LSF_Fnal u_Bat ch” >
 <Syst emVi ew I D=” Fnal u_Bat ch_I r i x” / >
 <Syst emVi ew I D=” Fnal u_Bat ch_Sol ar i s” >
 <! —r ef er ences t o t he syst em vi ews- - - ! >
 <Syst em Name=Pi ng Cl ust er =” Fnal u_Bat ch” / >
 <! —r ef er ence t o t he syst em- - ! >
 <Syst em Name=” OSHeal t h” Cl ust er =” Fnal u_Bat ch” >
 <Moni t or edEl ement Name=” / t mp” Host = Host =” f sgb02” / >
 <Moni t or edEl ement Name=” / t mp” Host =” f sgb03” / >
 ….
 </ Syst em>
 <! —r ef er ences t o moni t or ed el ement s- - ! >
</ Syst emVi ew>

This example defines a system view LSF_Fnal u_Bat ch that contains two other system views
(Fnal u_Bat ch_Sol ar i s and Fnal u_Bat ch_I r i x), one system (Pi ng. Fnal u_Bat ch), and
several monitored elements (/ t mp/ f sgb03. OSHeal t h. Fnal u_Bat ch for example).

Example 2:

The following example defines system views Fnal u_Bat ch_I r i x that contains three LSF systems
running on nodes named f sgb02, f sgb03, and f sgi 02.
<Syst emVi ew I D=” Fnal u_Bat ch_I r i x” >
 <Syst em Name=” LSF” Cl ust er =” f sgb02” / >
 <Syst em Name=” LSF” Cl ust er =” f sgb03” / >
 <Syst em Name=” LSF” Cl ust er =” f sgi 02” / >
</ Syst emVi ew>

 27

7.5.2 System
A <Syst em> tag contains multiple <Moni t or edEl ement > tags and should be referenced at least once
within <SystemView> tag. A definition of a system hierarchy should be placed outside system view scope.
In the NGOP hierarchy definition a <System> tag has two additional optional attributes:

Ser vi ceType – default “24by7”
Ref Rul e - a reference to the status rules set, describing the status rules for this system, the default

value is “SystemDefRuleSet”

This configuration file should conform the DTD rules.

Example:

The following example defines a system called OSHeal t h. Fnal u that is monitored around on a 24by7
basis. The status rule set defining the status of this system is described in SGI Heal t hRul eSet . The
system consists of several monitored elements (“ping.fsgb02.Ping.Fnalu_batch” for example).
<Syst em Name=” Pi ng” Cl ust er =” Fnal u_Bat ch” Ser vi ceType=” 24by7”

Ref Rul e=” SGI Heal t hRul eSet ” >
<Moni t or edEl ement Name=” pi ng” Host =” f sgb02” Type=” Har dwar e” / >
<Moni t or edEl ement Name=” pi ng” Host =” f sgb03” Type=” Har dwar e” / >
<Moni t or edEl ement Name=” pi ng” Host =” f sub02” Type=” Har dwar e” / >

</ Syst em>

7.5.3 Monitored Element
A <Moni t or ed El ement > tag is encountered only within <Syst em> tags and has two additional
optional attributes:

Ser vi ceType – default is service type of the host
Ref Rul e – a reference to the status rule set, describing the status rules for this monitored element, the

default value is “MEDefRuleSet”

This configuration file should conform to the DTD rules.

Example:
The following example defines the monitored elements with an i d of cpuLoad. f nsf o. OSHeal t h.
Fnal u and a Type of sysUsage. The status rule set defining the status of this monitored element is
described in MEDef Rul eSet and the service type is the service type of the host f nsf o.

<Syst em Name=” OSHeal t h” Cl ust er =” Fnal u” >
<Moni t or edEl ement Name=” cpuLoad” Host =” f nsf o” Type=” sysUsage” / >

</ Syst em>

7.6 Status Rule Sets
Every set of status rules is associated with some systems view or monitored objects. When the NGOP
Monitor receives an event regarding an object, it uses set of status rules associated with this object to define
its status and severity level. It also applies the corresponding rules to every component of the hierarchy to
which this object belongs. In the NGOP configuration, a <St at usRul eSet > tag with required attribute
ID represents the set of status rules. Every set of status rules definition is located in a separate file and has
the following required declaration and tags:

<?xml ver si on=’ 1. 0’ ?>
<! DOCTYPE NGOPRul es SYSTEM “ r ul es. dt d” >
<NGOPRul es>
<St at usRul eSet I D=” MEDef Rul eSet >

……dependent l i st coul d be pl aced her e
…… r ul es

 28

</ St at usRul eSet >
</ NGOPRul es>

The content of the set of status rules definition is divided into two parts:

• Dependent list - list of all objects that this particular monitored object depends on
• Rules

A Dependent list is omitted if a monitored object doesn’ t depend on any other object. This configuration
file should conform to the DTD rules.

7.6.1 Dependent List

A dependent list contains a list of the references to monitored objects and system views. In the NGOP
configuration, a <DependLi st > tag represents a dependent list. In a dependent list, monitored
objects/system views are arranged in groups. A group may contain other groups and is represented by a
<Gr oup> tag that has one required attribute Name (it should be unique only within this
<Sat usRul esSet > definition). Every group has a parameter “ %Gr oupLen” that is equal to the total
number of monitored objects in the group. A system may contain one special empty group with the attribute
Name set to “ { sel f } ” . It means that this system depends on all monitored elements that it contains. All
objects in a dependent list are ordered by their appearance relative to a particular group. A <For > tag
may be used in a dependent list. This XML fragment should conform to the DTD rules.

Example:
This is an example of dependent list that consist of the “ sel f ” group:
<DependLi st >
<Gr oup Name = “ { sel f } ” / >
</ DependLi st >

The FBS system is a batch system developed at Fermilab. FBS depends on a bmgr and l ogd process
running on a central node. FBS depends on the central node being up. FBS also depends on a process
called a launcher to be running on all nodes in the system that can run a batch process. FBS runs on a
cluster. In this example, the clusters CDFFar m and D0Far m (defined in the Host sI nCl ust er s. xml
file) are running the FBS system.

Host sI nCl ust er s. xml :
<?xml ver si on=’ 1. 0’ ?>
<! DOCTYPE NGOPConf i g SYSTEM “ ngop_def aul t . dt d” >
<NGOPConf i g>
<Def aul t _Fi l e/ >
 <Host sI nCl ust er s>
 <Cl ust er Name=” CDFFar m” >
 <Cl ust er Name=” CDFFar mI O” >
 <Host Name=” cdf f ar m1” / >
 </ Cl ust er >
 <Cl ust er Name=” CDFFar mWor ker ” >

<Host Name=” f ncdf 1” / >
 ….
 <Host Name=” f ncdf 90” / >
 </ Cl ust er >
 </ Cl ust er >
 <Cl ust er Name=” D0Far m” >
 <Cl ust er Name=” D0Far mI O” >

<Host Name=” d0bbi n” / >
 </ Cl ust er >
 <Cl ust er Name=” D0Far mWor ker ” >

 <Host Name=” f nd01” / >
 ….
 <Host Name=” f nd100” / >
 </ Cl ust er >
 </ Cl ust er >

 29

….
 </ Host sI nCl ust er s>
</ NGOPConf i g>

<?xml ver si on=’ 1. 0’ ?>
<! DOCTYPE NGOPRul es SYSTEM “ r ul es. dt d” >
<NGOPRul es>
<FBSI nst ance Name=” FBS” >
 <I nst ance Name=” D0” / >
 <I nst ance Name=” CDFFar m” / >
</ FBSI nst ance>
<For Each=” I nst ance” Var =” { %I } ” I n=” FBSI nst ance” Name=” FBS” >
 <St at usRul eSet I D=” FBS{ %I } Rul eSet >
 <DependLi st >
 <Gr oup Name=” f bs_daemon/ >
 <Syst em I D=” FBS” Cl ust er =” { %I } Far m” >
 <For Each=” Host ” Var =” { %H} ” I n=” Cl ust er ” Name=” { %I } Far mI O”

Fi l ename=” Host sI nCl ust er s. xml ” >
<Moni t or edEl ement Name=” bmgr ” Host =” { %H} ” / >
<Moni t or edEl ement Name=” l ogd” Host =” { %H} ” / >

 </ For >
 </ Syst em>
 </ Gr oup>
<! —l ogd coul d be r ef er enced i n DependRul e as f bs_daemon[1] - - ! >
<Gr oup Name=” l auncher ” >
 <Syst em I D=” FBS” Cl ust er =” { %I } Far m” >
 <For Each=” Host ” Var =” { %H} ” I n=” Cl ust er ” Name=” { %I } Far mWor ker ” >

<Moni t or edEl ement Name=” l auncher Host =” { %H} ” / >
 </ For >
 </ Syst em>
</ Gr oup>
<! —l auncher on f ncdf 1 coul d be r ef er enced i n DependRul e as l auncher [0] - - ! >
<Gr oup Name=” host UP” / >
 <Syst em Name=” Pi ng” Cl ust er =” { %I } Far mI O” >
 <For Each=” Host ” Var =” { %H} ” I n=” Cl ust er ” Name=” { %I } Far mI O” >

<Moni t or edEl ement Name=” pi ng” Host =” { %H} ” / >
 </ For >
 </ Syst em>
</ Gr oup>
</ DependLi st >

…
</ St at usRul eSet >
</ NGOPRul es>

7.6.2 Rule

When the NGOP Monitor receives an event it performs the following steps:

1. Finds the monitored object associated with this event
2. Finds the status rule set that defined rules for this monitored object
3. Evaluates an expression defined in every rule
4. Applies the rule (sets status and severity level) if an evaluated expression is true. The worst

status/severity level of the corresponding rule with the highest priority will determine ultimate
object’s status/severity level.

5. Identifies all the members of the hierarchy that are affected by the change of this monitored object
status.

6. Repeats steps 2-6 until there are no more affected members of hierarchy (step 5).

There are two implemented rule types.
• A Generic Rule (<Gener i cRul e> tag) sets the monitored object status and severity level

based on the event received from the NCS.

 30

• A Dependent Rule (<DependRul e> tag) sets the monitored element status and severity
level based on the event received from the NCS and the status of each dependent monitored
object in some group.

All these rules have three required attributes:

• St at us – This can assume a special value “None” indicates that this rule will not change
an existing status. In a dependant rule the St at us of dependent list members is used in the
expression.

• Pr i o (Pr i or i t y) – This indicates the importance of the particular rule. It can assume
any integer value greater than or equal to 0. The lower the value, the less important the rule is.
If several rules are satisfied, the status and severity level of the monitored object will be the
one associated with the rule with the highest priority.

• SevLevel (Sever i t y Level) – This can assume a special value of “None” that
indicates that this rule will not change the existing severity level.

There is one optional attribute:

• Dsc (Descr i pt i on) . – Description is an explanation of the condition of a rule. Special
parameters may be included in a description such as %I D , %Host or %Event . These
parameters will be replaced by the corresponding values of the monitored object associated
with this rule.

Every rule contains an expression that has to be evaluated upon receipt of an event. In an expression any
particular field of the event is referred by its name. An Action can be attached to any of the rules.

Example:

Let’s assume that the agent “Li nuxHeal t h” is monitoring the file system “ / expor t / home” on the
worker node “ f nd01” . This file system should be mounted from the I/O node “ d0bbi n” . The
Li nuxHeal t h Agent can generate events in three cases:

1. The file system is not mounted
2. Automount program is not running
3. The file system is more than 95% full

The status of the monitored element should change upon receiving any of these events unless the I/O node is
down.

In order to do so the set of status rules (Fi l eSyst emRul eSet) should include the following:
Rule Type Status Priority Evaluated Expression
Dependent Good 1 d0bbin is down
Generic Bad 0 File system is not mounted
Generic Error 0 Automount is not running
Generic Warning 0 File system is 95% full

If at some point we receive event 1 (The file system is not mounted), the status becomes “Bad” if the I/O
node is up and “Good” if the I/O node is down. The monitoring of the status of the I/O node should be
done from another location. In this way, the failure of the I/O node will not affect the agent monitoring it.

7.6.3 Generic Rule Example
This rule is applied to a particular monitored object if the event associated with this object has a “ St at e”
of 1 (“Up”). The severity level remains unchanged. This XML fragment should conform to the DTD rules.
<Gener i cRul e St at us=” Good” Pr i o=” 0” SevLevel =” None” >

 31

<appl y>
<eq/ >
 <ci > St at e </ ci >
 <cn> 1 </ cn>
</ appl y>
<! —i f expr essi on (St at e==1) i s t r ue , r ul e i s appl i ed- - ! >
</ Gener i cRul e>

This rule is applied to a particular monitored object if the event associated with this object has “ St at e”
value equal to 0 (“Down”). The severity level remains unchanged.

<Gener i cRul e St at us=” BAD” Pr i o=” 0” SevLevel =” None” >
<appl y>
 <eq/ >
 <ci >St at e</ ci >
 <cn>0</ cn>
</ appl y>
<! - - i f exr essi on (St at e == 0) i s t r ue t hen t he r ul e i s appl i ed - - >
</ Gener i cRul e>

This rule is applied to a particular monitored object if the event associated with this object has “ St at e”
value equal to 1 (“Up”) and “ SevLevel ” value equal to 6 (“Bad”). It set status to “ Er r or ” .

<Gener i cRul e St at us=” Er r or ” Pr i o=” 0” SevLevel =” None” >
<appl y>
<and/ >
<appl y>
 <eq/ >
 <ci >St at e</ ci >
 <cn>1</ cn>
</ appl y>
<appl y>
 <eq/ >
 <ci >SevLevel </ ci >
 <cn>6</ cn>
</ appl y>
</ appl y>
<! —i f expr essi on ((St at e==1) && (SevLevel ==6)) i s t r ue , r ul e i s appl i ed- - ! >

7.6.4 Dependent Rule
A Dependent Rule allows for the use of objects from a dependent list in an expression. These objects are
indexed by their position within a specific group of a dependent list. For example, the object that is listed
third in the group named “ f bs_daemon” is referred as “ f bs_deamon[2] ” (indexing starts with 0) in
an expression. If a dependent list of a system status rule set has a group with Name=” { sel f } ” , the i-th
monitored object that belongs to this system is referred as “ { sel f [i - 1] } ” . This XML fragment should
conform to the DTD rules.

Example
This rule is applied to the “FBS” system when NGOP reports that the bmgr daemon is not running. bmgr
is the first element (f bs_daemon[0]) of the f bs_daemon group in the dependent list of the FBS rule
(see dependent list Example)

<DependRul e St at us=” Bad” Pr i o=” 1” SevLevel =” None” Dsc=” Bat ch_Manager _i s_down” >
<appl y>
<and/ >
<appl y>

<eq/ >
<ci >f bs_daemon[0] . Event Type</ ci >
<cn>” Daemon” </ cn>

</ appl y>
<appl y>

<eq/ >
<ci >f bs_deamon[0] . St at e</ ci >
<cn>0</ cn>

</ appl y>

 32

</ appl y>
<! —i f expr essi on ((bmgr . Event Type==” Daemon”) && (bmgr . St at e==0)) i s t r ue t hen r ul e i s
appl i ed- - ! >

This rule is applied to the FBS system when NGOP reports that the FBS central machine is down. pi ng is
the first element of the “hostUp” group (host Up[0]) in the dependent list of the FBS rule (see dependent
list Example).

<DependRul e St at us=” Unknown” Pr i o=” 1” Dsc=” %Host _i s_down” >
<appl y>

<eq/ >
 <ci >host Up[0] . St at e</ ci >
 <cn>0</ cn>
</ appl y>
</ DependRul e>

Chapter 8: Status Engine API
The Status Engine API provides access to Status Engine run-time and configuration information about a
particular monitored object. The API front-end class SEClient class performs communication between an
API client (e.g Web Monitor) application and Status Engine.
In order to use Status EngineAPI, user application must create an object of this class. An SEClient object
provides methods for:

• Obtaining the information about monitored object status, state, severity level, type etc
• Obtaining information about monitored object heirarchy
• Obtaining information about events, alarms and actions associated with a particular monitored

object
• Acknowledged chosen events, alarms and actions associated with a particular monitored
• Initiate update request
• Initiate performance of manual pending actions

Python and Java binding are available to this time. This chapter describes the SEClient class of the Status
Engine Python API.

8.1 Constructor SEClient
Purpose: creates new SEClient object. Creates a connection to the Status Engine for a particular user/role.

Synopsis:

• SECl i ent (r ol e, user , por t , host)

Arguments:

• role - Status Engine Role
• user - Unix name of the client
• port – Locator Server port
• host – Locator Server host

Return value:
• SEClient object

Example:
se = SECl i ent (“ oper at or ” , ” smi t h” , 5001, ” appl e. f nal . gov”)

 33

8.2 bye()
Purpose: Gracefully disconnects from Status Engine

Synopsis:

• bye()

Arguments:

• None
Return value:

• None

Example:
se. bye()

8.3 TreeGetRoot()
Purpose: Return the root of the hiearchy tree.
Synopsis:

• Tr eeGet Root ()

Arguments:

• None
Return value:

• String - root of hierarchy tree
Example:
r i d = se. Tr eeGet Root ()

8.4 TreeGetKids()
Purpose: Return a list of children ids rooted by specified parent id
Synopsis:

• Tr eeGet Ki ds(r i d)

Arguments:

• rid – parent id
Return value:

• list of Stings – children ids
Example:
/ * Ret ur n al l chi l dr en * /
r i d = se. Tr eeGet Root ()
k i ds = se. Tr eeGet Ki ds(r i d)

 8.5 GetLastHeard()
Purpose: last update recieved from the NCS
Synopsis:

• GetLastHeard()
Arguments:

• None
Return value:

 34

• Float – Unix time : last update received from the NCS
Example:
tm=se.GetLastHeard()

7.6 GetUpdateRequest()
Purpose: initiates update request fro a particular monitored object. It could be requested only for System
or Monitored Element.
Synopsis:

• GetUpdateRequest(id)
Arguments:

• String – id of monitored object
Return value:

• None
Example:
se.GetUpdateRequest(rid)

8.7 GetStatus()
Purpose: Obtains status of a particular monitored object.
Synopsis:

• GetStatus(id)
Arguments:

• String – id of a particular monitored object
Return value:

• String – status (e.g. Bad, Good, Error…)
Example:
status=se.GetStatus(id)

8.8 GetKnownStatus()
Purpose: Obtains “known” status of a particular monitored object.
Synopsis:

• GetKnownStatus(id)
Arguments:

• String – id of a particular monitored object
Return value:

• String – “known” status (e.g. working, test, in repair…)
Example:
knownStatus=se.GetKnownStatus(id)

8.9 GetServiceType()
Purpose: Obtains service type of a particular monitored object.
Synopsis:

• GetServiceType(id)
Arguments:

• String – id of a particular monitored object
Return value:

 35

• String – service type (e.g. 24by7,8to17by5 etc)
Example:
st=se.GetServiceType(id)

8.10 GetSevLevel()
Purpose: Obtains severity level of a particular monitored object.
Synopsis:

• GetSevLevel(id)
Arguments:

• String – id of a particular monitored object
Return value:

• String – severity level (e.g. Warning, Error,NotInService)
Example:
sl=se.GetSevLevel(id)

8.11 GetState()
Purpose: Obtains state of a particular monitored object.
Synopsis:

• GetState(id)
Arguments:

• String – id of a particular monitored object
Return value:

• Int – state (e.g. 0 (Down) ,1(Up))
Example:
state=se.GetState(id)

8.12 GetColor()
Purpose: Obtains color that corresponds to a particular status.
Synopsis:

• GetColor(status)
Arguments:

• String – status
Return value:

• String – color (e.g. red,blue,#d1f4c3 …)
Example:
color=se.GetColor(“Bad”)

8.13 GetType()
Purpose: Obtains type of a particular monitored object.
Synopsis:

• GetType(id)
Arguments:

 36

• String – id of a particular monitored object
Return value:

• String – type (e.g. Hardware,Webpage,…)
Example:
type=se.GetType(id)

8.14 GetIcon()
Purpose: Obtains file name of the icon that corresponds to a particular type of monitored object.
Synopsis:

• GetIcon(type)
Arguments:

• String – type
Return value:

• String – file name
Example:
icon=se.GetIcon(“FileSystem”)

8.15 GetHistory()
Purpose: Obtains list of events, alarms or actions for a particular monitored object.
Synopsis:

• GetHistory(id,what)
Arguments:

• String - id of a particular monitored object
• String – what: type of message (Event, Alarm or Action)

Return value:

• List of Strings – list of messages
Example:
alist=se.GetHistory(“Alarm”,id)

8.16 GetPendingAction():
Purpose: Obtains list of pending actions
Synopsis:

• GetPendingAction()
Arguments:

• None
Return value:

• List of Strings – list of pending actions
Example:
palist=se.GetPendingAction()

8.17 HandlePendingAction()
Purpose: Initiates a request to perform or cancel pending action a list of pending actions.
Synopsis:

• HandelPendingAction(what,list)
Arguments:

 37

• String – what : type of action (Perform, Cancel)
• List of Strings – list of chosen pending action

Return value:
• None

Example:
se.HandlePendingAction(“Cancel” ,[“…”,”….”])

8.18 AckHistory()
Purpose: Acknowldege of chosen messages.
Synopsis:

• AckHistory(what,list)
Arguments:

• String – what : type of messages (Event,Action,Alarm)
• List of Strings – list of chosen messages

Return value:
• None

Example:
se.AckHistory(“Event” ,[“…”,”….”])

8.18 Python Example of Status Engine Client
The following python module will establish communication with Status Engine with role “enstore-admin”
and obtains information about root of monitored objects hierarchy, and status, color, severity level of its
children . It also will get events for each child.:

i f __name__==" __mai n__" :
 se=SECl i ent (" enst or e- admi n" , " user " , 3111, " ngop")
 r oot =se. Tr eeGet Root ()
 pr i nt " r oot i d i s " , r oot
 k i dsLi st =se. Tr eeGet Ki ds(r oot)
 f or k i d i n k i dsLi st :
 s t at us=se. Get St at us(k i d)
 t ype=se. Get Type(ki d)
 i con=se. Get I con(t ype)
 col or =se. Get Col or (st at us)
 pr i nt " Chi l d %s Type %s St at us %s I con %s Col or %s" %
(k i d, t ype, st at us, i con, col or)
 evLi st =se. Get Hi st or y(k i d, " Event ")
 pr i nt evLi st

 38

Chapter 9: Apache/FCGI
For efficiency, the WEB GUI for NGOP currently uses the FastCGI package to maintain a single long-
running process to provide the web interface to NGOP, which avoids repeated re-connects to the Status
Engine, and allows caching some information from the Status Engine.
You can run the script as a standalone CGI script, but it is noticeably slower. More details on FastCGI in
general and performance are available at http://www.fastcgi.com. Other similar packages like PCGI
(PersistentCGI from the Zope distribution) could be used, but some slight modification to the web_gui.py
code would be needed to provide the right request-handling loop.

The Apache mod_fastcgi module is included in the Fermilab ups/upd distribution of Apache, so if you're
using that distribution, no recompilation needs to be done; otherwise you can download and install
mod_fastcgi (possibly as a dynamic loaded module) into your Apache configuration. Instructions on doing
this are avaliable at http://www.fastcgi.com/.

We recommend using the following directives related to FastCGI in your Apache httpd.conf:
FastCgiIpcDir /var/adm/www/hostname # or wherever you keep your logs
FastCgiConfig -idle-timeout 300 -maxClassProcesses 1
And in either the httpd.conf or the .htaccess file where you place the web_gui scripts: AddHandler fastcgi-
script .fcgi.
And of course, if you built FastCGI as a dynamic module, you need to precede any of the above with an
appropriate LoadModule line in httpd.conf.
Properly configured, FastCGI makes the web interface much more efficient, and nicer for end users.

Chapter 10: Web Based Monitor
As of release 2.0, NGOP provides a web based monitor. The web based monitor gets information from the
NGOP Central Server and provides monitoring information to the browser based on a selected role. A role
is simply a set of system views, systems, monitoring elements and status rules that are relevant to a
particular set of users.

 39

10.1 Signing On
To access the web based gui, refer your web browser to the following URL
 ht t ps: / / ngopcl i . f nal . gov/ cgi - bi n/ web_gui / web_gui . f cgi
(Note that it is ht t ps : instead of the customary ht t p:)

When you enter this URL, your browser will popup the login screen. You must talk to your local NGOP
administrator to get a web id and password. Once you have logged in, you will be presented with a page to
choose your role. Each role will have a set of objects defined that are relevant to a particular set of people.

10.2 Monitor
After the role has been chosen, the high level of monitored hierarchy will be displayed. Below is an
example from the oper at or role.

[NGOP Web Admin] – this is the link to the web admin tool that allows to modify “known” status of any
of the monitored objects.
Settings – shows the current host, port information of the Locator Server as well as existing statuses, types
and icons:

 40

Monitor - There are four sections to this page. The upper left corner displays the date and time of the last
update from the NCS, and also states if there are any pending actions.

In the lower left corner is a concise, text based view of the display of the system. The highest level element,
al l Fer mi in this example, is displayed with a small red icon that represents system view. The colored
icon represents the status of the monited object, which is determined by the corresponding status rules. In
this case, the system view cms has a sever problem (red), and the enstore system view has a serious
problem (yellow). Clicking the arrow key to the left of the al l Fer mi text will expand the view. Note that
when expanding or contracting a view, the display on the right is also affected. Likewise, drilling down on
an icon in the lower right portion will affect the condensed view on the lower left.

The lower right portion contains the display for the al l Fer mi system view. Each monitored object
defined as part of the al l Fer mi system view is displayed as a colored icon representing the state of that
system, and possibly a colored arrow indicating an alarm and it’s severity level on that object. It is possible
to drill down into a system by clicking on it’s icon. For example, clicking on the enst or e icon would
display the next level of hierarchy and provide more information.

 41

The upper right portion of the window contains a menu with the items Di spl ay, Act i on, Event ,
Al ar m, Edi t : Act i on, Edi t : Event , Edi t : Al ar m, and Summar y . This menu controls
what is displayed underneath. For example, if we selecrt Event menu item the following page will be
displayed:

 42

This screen simply displays the list of events for all monitored objects that belong to enstore system view.
To acknowledge an event, select the Event : Edi t link in the upper right hand corner. This will bring up
a screen with the events for that monitored object, along with an Ack button for each event. After the
appropriate acknowledgement buttons have been selected, click the Appl y button to actually acknowledge
the selected events. The Check Al l button will cause all alarms to be Ack ’ed. Alarms and Actions have
a similiar mechanism for display and acknowledgement. One can sort a column by clicking on the column
header.
One can request to get Update information (the current value of a particular object) for system or monitored
element; in order to do so click on icon located near system or monitored element name.

10.2 Standalone Web Monitor Starting/Stopping
You can start standalone web monitor….

In order to do so you have to issue the following command:
ngop web_monitor –c cfg.xml &
Configuration template file is shown below:

<?xml ver si on=' 1. 0' ?>
<! DOCTYPE webmoni t or _cf g SYSTEM “ moni t or . dt d” >
<webmoni t or _cf g>
 <WebGui Type=" - st andal one" / >
 <LS Por t =" 3111" Host =" ngop” / >
</ webmoni t or _cf g>

Where WebGui tag required one attribute Type that can assume the following values:
“ -fcgi” ,” -cgi” ,” -standalone” . LS tag defines host and port of Location server. . This configuration file
should conform to the DTD rules.

Chapter 11: Java Based Monitor

The Java GUI is a new component written as a replacement for the older python GUI. It provides graphical
hierarchical representation of the NGOP monitored elements. It is written entirely in java (requires java run
time environment version 1.4+) including its communication layer. It obtains all it status information from
the Status Engine (and Locator Server).

11.1 Java Monitor Starting/Stopping
In order to do so you have to issue the following command:
ngop jmonitor –c cfg.xml &
Configuration template file is shown below:

<?xml ver si on=' 1. 0' st andal one=" yes" ?>
<! - - DOCTYPE j moni t or _cf g SYSTEM " j moni t or . dt d" - - >
<! DOCTYPE j moni t or _cf g >
<j moni t or _cf g>
 <l s Por t =" 3111" Host =" ngopcl i . f nal . gov" / >
</ j moni t or _cf g>

Where LS tag defines host and port of Locator Server. . This configuration file should conform to the DTD
rules.

 43

11.2 Monitor Overview

On startup one will see the role selection dialog:

After choosing the role one can click on “Start NGOP Monitor” button and the following window will be
displayed:

One can browse the tree by clicking on the tree nodes or elements of the Display tab. The (default) Display
tab will show the selected elements. Right clicking on the Display tab elements will show a detach/update
menu for the elements that allow the operations. "Up", "Collapse All" and "Collapse" buttons affect the way
the tree is displayed. It may take 10-15sec to refresh the views depending on the machine and system load
or the amount of information to be retrieved.
The other tabs: Events, Alarms, Actions (and currently not implemented Pending Actions) show tables of
text reverse sorted by time. The sort order can be (temporarily for now) changed by clicking or "double
clicking" (or "shift clicking") on the table headers. The refreshing (which will restore the time sort) can be
suspended by pressing the "EnableManuallMode" button. "EnableAutoMode" button will restore the
automatic refreshing of the information.
One can acknowledge events/actions by using individual check boxes and "Mark All Acknowledged" and
"Send Acknowledgements" buttons.
One exits the jmonitor by either closing the window or using the NGOP->Exit menu (or by Control-c or
equivalent which is a non-confirm exit path)

 44

Chapter 12: Configuration File Manager
The configuration files for the NGOP system are monitored by a separate set of processes referred to as the
Configuration File Manager System (CFMS) which cooperate:

• Configuration file Librarian
• Configuration file Indexer
• Configuration file Broker
• Administrative client
• Monitoring Client

Each of these packages has distinct responsibilities and is described below.

12.1 Librarian
The librarian is responsible for maintaining the master copies of the configuration files. In addition, the
librarian is responsible for:

• Authenticating that users have permissions for file modification
• Maintaining revision history of files to allow checkpointing, rollback, commit, and full revision

history.
• Delivering the contents of particular configuration files to Monitoring Clients, the NCS, and the

CFM Indexer.
The librarian uses CVS to store configuration files.

12.2 Indexer
The Indexer reads a CVS tagged set of configuration files from the Librarian, generates an index listing of
the files needed for each component of the system. The indexer also performs syntax and basic sanity
checks of the configuration files, as well as finding dependencies.

12.3 Broker
The Broker communicates with two types of clients, and has distinct responsibilities for each:
Monitoring /Action Servers

When the monitoring client connects to the Broker, it sends the broker a subscription list of
components. The Broker uses the indices generated by the Indexer to repeatedly send a revision
tag and list of configuration files to the Monitoring Client—once initially, and then again as new
indices are created. The monitoring client then requests those configuration files directly from the
Librarian.

Administrative Clients
The Broker accepts requests from the Administrative Client including a version control/rollback
tag after the admin client has run the indexer and checked the new index is with the Librarian.

12.4 CFMS Configuration File
CFMS configuration file contains the following information:

<cl i ent _cf g>
<Cl i ent por t =” 8080” host =” ngop” name=” Cnf gCl nt ” / >
<Cf gXml cvsRep=” conf i gxml ”

cvsRoot =” : pser ver : ngop@ngop. f nal . gov: / home/ ngop/ Reposi t or y”
ver si on=” v2_0” name=” Cf gXml AC” / >

</ cl i ent _cf g>

 45

The <client_cfg> tag client tag defines parameters that are required to start CFMS. This tag is required and
it includes the following attributes: TCP Port to connect to CFMS, host name where CFMS is running, and
the name of CFMS (CnfgClnt).

The Cf gXml tag is required. It defines the parameters that will be used to create a local configuration and
connect to the CVS repository. The Cf gXml tag includes the following attributes: name of ngop
configuration cvs repository, CVSROOT definition, tag of current configuration version and the name. This
configuration file should conform to the DTD rules.

12.5 CFMS Starting/Stopping

The CFMS is started in several ways. If the CFMS configuration file is located in

/var/ngop/cfms directory, it is started issuing the following command:

ngop st ar t cf ms

To start the CFMS with your own configuration file, use the following command:
ngop cf ms –c conf i g_f i l e

12.6 Administrative Client
The administrative client allows one to:

• modify/create one or more configuration files (via the Librarian, and an appropriate editor)

• Run consistency checks on the files (by invoking Indexer)

• Commit a set of changed files (possibly yielding a CVS tag)

• Notify the Broker that the new tagged version of configuration files are available.

 46

12.7 Admin Starting/Stopping

The Admin GUI is started issuing the following command:

ngop admi n –c conf i g_f i l e

The Admin GUI uses the same configuration file as CFMS. Below is a screen sample from the Admin GUI.

 47

Chapter 13: Archive Server

13.1 Archive Server Overview
The Archive/History Server System is responsible for storing and retrieving messages generated by the
NGOP system. Each message sent to the archive server is stored in an Oracle database. There are four
major components of the Archive Server:

• Server: This process runs on an Oracle client machine and accepts messages from the NCS. It
immediately caches the requests to local disk.

• Database Interface: This process takes the requests that have been cached by the server and stores
them in the database. Having a separate process to store the data in the database allows the server
to continue to run even if there are problems with the Oracle database.

• Web Interface: The information in the database is retrieved using a web-based interface.
• Cleanup Process: This process processes records in the Oracle database and rolls messages off that

are more than 15 days old.

13.2 Archive Server Starting/Stopping
The script to start the Archiver is located in the $NGOP_DI R/ pr ot ot ype/ ar chsr v/ sr c/ ser ver
directory. $NGOP_DIR is set with UPS by issuing set up ngop. To start the archiver daemons:
 set up ngop
 cd $NGOP_DI R/ pr ot ot ype/ ar chsr v/ sr c/ ser ver
 st ar t _daemons

The st ar t _daemons script launches two other scripts: st ar t _ar chi ver and st ar t _dbi nt er .
These scripts sit in a loop and periodically check to make sure the daemons are running. If for some reason
the daemons die, the scripts will restart them.

13.3: Archiver Configuration
Below is an example configuration file for the archive server:

<Ar chi ver Conf i g>
<Por t >7001</ Por t >
<Ar chi ver Host >f ncduh1. f nal . gov</ Ar chi ver Host >
 <Or aUser >or acl e_user </ Or aUser >
 <Or aPW>or acl e_pw</ Or aPW>
 <Or aI nst ance>pr ocdev</ Or aI nst ance>
<LogPat h>/ home/ f ncduh/ ngop/ ser ver l og/ l og. out </ LogPat h>
<DBI nt er Sl eepI nt er val >15</ DBI nt er Sl eepI nt er val >
<Request Di r ect or y>/ home/ f ncduh/ ngop/ scr at ch</ Request Di r ect or y>
<Er r or Di r ect or y>/ home/ f ncduh/ ngop/ er r or s</ Er r or Di r ect or y>
</ Ar chi ver Conf i g>

The Por t and Ar chi ver Host are the port and host that the archive server is listening on for requests.
The Or aUser / Or aPW is the Oracle userid and password of an owner that can write into the archive
tables. Or aI nst ance is the Oracle instance that the tables reside in. LogPat h points to the file that
contains the log files created by the archiver. DBI nt er Sl eepI nt er val is the time interval in seconds
that the database interface program will look in Request Di r ect or y to process new messages.
Messages are placed in Request Di r ect or y as they are received by the archive server.
Er r or Di r ect or y is the pathname where requests that could not be processed are placed. This
configuration file should conform to the DTD rules.

 48

Chapter 14: Monitoring Agents

14.1: Overview
Monitoring Agents (MA) are processes that monitor some entity and report a status to the NCS. NGOP
provides a basic set of MA’s, but users are free to write their own. The MA is the element that gives NGOP
a great deal of flexibility.

A Monitoring Agent(MA) includes the following features:

• interfaces to NCS
• monitors the characteristics of a particular monitored object
• sends events to the NCS when characteristic of the object meets specific conditions (An MA

doesn’ t send an event when the monitored object doesn’ t meet any conditions. In this case the
State of the monitored object is assumed to be UP. A MA will send an event if a monitored
object satisfies some condition.

• performs local actions
• sends requests to perform centralized actions
• sends heartbeats to the NCS
• resends events and configuration when the connection with the NCS is interrupted
• MA configuration, conditions and actions associated with conditions are described in the MA

configuration file using XML. This file should be located on the node where the MA is
running.

NGOP provides a framework for creation of the MAs: either by using the MA API or the PlugIns Agent.

14.2 Plugin Agent
A PlugIn Agent provides the monitoring of software or hardware components utilizing existing scripts or
executables (plug-ins). These plug-ins should be able to measure and print some quantitative characteristics
of the monitored objects. A configuration file describing the monitored hierarchy, plug-ins and a set of
conditions is required in order to use a PlugIns Agent. This configuration file should conform to specific
DTD rules. A configuration file should start with the following XML declarations:

<?xml ver si on=” 1. 0” ?>
<! DOCTYPE MA- conf i g SYSTEM “ agent . dt d” >

The first tag of a PlugIns Agent XML document is a <MA_conf i g> tag, which defines the MA
configuration. This tag is required, and requires additional attributes:

• Name – the name of the PlugIn Agents.
• Updat e – specifies the time interval in seconds between running the plug-in agent.
• Type – specifies the type of the MA. There are two possible types:

o Daemon (default) - Monitoring Agent that should be always present
o Cron – Monitoring Agent that will run for a short period of time and then reappear

within the time interval specified in the heartbeat attribute

An <NCS> tag (required) defines the NCS parameters and includes the following required attributes:

• Por t - the NCS UDP port
• Host - the NCS host
• Hear t beat - specifies the heartbeat interval in seconds

 49

A system description should follow the <NCS> tag. Several systems are described in the same XML
document. A <Syst em> tag indicates the beginning of the system definition. It contains multiple
monitored elements.

A <Condi t i onSet > tag indicates the beginning of the condition set definition and may be placed within
a <Moni t or edEl ement > or <Syst em> tag. The <Condi t i onSet > tag contains the description of
a plug-in and at least one condition.

The < f n> tag describes a plug-in function that will be executed to define the state of a monitored element.
The <f n> tag has the following required attributes:

• Name - the name of the operation (“plug_in” for all the PlugIns Agents)
• Ar g – the full path to the plug-in that needs to be executed to verify the state of monitored

object (Parameters %I D, %Name, %Cl ust er and %Host are used in an attribute Ar g and
will be substituted with the corresponding values of monitored object)

• Ret Val – the description of return values. It has the following format:
 “ t ype: var _name, t ype: var _name…”

 where type is float, int, string, array int, array float or array string

Important: in case of i nt , f l oat or st r i ng types the return values should be returned in the standard
output of a plug-in, and separated by a newline character. In case of an “ar r ay …” type the return values
should be returned in the standard output of a plug-in, and separated by space (see Example for more
details). If the plug-in exits with non-zero exit code then the return value is set to Er r or and the following
event will be generated:
“ Dat e=… I D=… Event Type=” execut abl e” Event Name=” pl ug- i ns” St at e=- 2 Descr i pt i on=” Fai l ed t o
execut e command”

The <Condi t i on> tag indicates the beginning of the condition definition and has the following
attributes:

• St at e (required) - defines the monitored object state if the occurred event satisfied this
condition

• SevLevel (required) - severity level of the event that satisfied this condition
• Descr i pt i on (required) - readable description of the event(Parameters %ID, %Name,

%Cluster ,%Host and %Event is used in an attribute Description and will be substituted with
the corresponding values of monitored object)

• Event Name (optional) - defines the event name if it is different from the monitored object
name (see Event)

• Event Type (optional) - defines the event type if it is different from the monitored object
type (see Event)

The <appl y> tag indicates the beginning of a mathematical expression that should be evaluated in order to
determine if the condition is satisfied. If an expression is evaluated to be t r ue a PlugIn Agent will generate
an event. A special variable %l en(r et Val ue_ar r ay_name) is used in a <ci > tag. It refers to the
length of the array in plug-ins return value and is used in <sum>, <mi n> and <max> function operators
(see Example for more details).

The <Act i on> tag is optional and it indicates the beginning of action definition. If the condition is
satisfied and the action is defined, then the PlugIns Agent will perform this action locally or send a request
to the NCS to execute this action.

The general structure of a PlugIns Agent configuration file should look like the following:

<?xml ver si on=” 1. 0” ?>
<! DOCTYPE MA- Conf i g SYSTEM “ agent . dt d” >

 50

<MA- Conf i g Name…. >
 <NCS Host =…/ >
 <Syst em Name=. . >
 <Moni t or edEl ement Name=…>
 <Condi t i onSet >
 <f n Name=” pl ug- i ns” Ar g=…/ >
 <Condi t i on St at e=…>

 <appl y>
<! —expr essi on- - ! >

 </ appl y>
 <Act i on>
 <! —act i on- - ! >
 </ Act i on>
</ Condi t i on>
<! —mor e condi t i ons- - ! >

 </ Condi t i onSet >
 </ Moni t or edEl ement >
 <! —mor e moni t or ed el ement s- - ! >
 </ Syst em>
 <! —mor e syst ems- - ! >
</ MA- Conf i g>

In the PlugIns Agent configuration l ocal host instances will be replaced by the local host name. This
configuration file should conform to the DTD rules.

Example 1:
Let’s assume that we want to monitor the system load averages for the past 1, 5, and 15 minutes using the
following command as a “plugin” :

upt i me| awk ‘ { pr i nt $(NF- 2) , $(NF- 1) , $NF} ’ | awk - F’ , ’ ‘ { pr i nt $1, $2, $3} ’

Assume that we want the PlugIns agent to generate an event when the minimum of cpu load averages
exceeds 12.0. The fragment of the PlugIns configuration file to perform this would look like the following:

<Moni t or edEl ement Name=” cpuLoad” Host =” l ocal host ” Type=” sysUsage” >
<Condi t i onSet >
<f n Name=” pl ug_i ns” Ar g=” upt i me| awk ‘ { pr i nt $(NF- 2) ,

$(NF- 1) , $NF} ’ | awk - F’ , ’ ‘ { pr i nt $1, $2, $3} ’ “
Ret Val =” ar r ay f l oat : l oad” / >

 <Condi t i on St at e=” UP” SevLevel =” 6” Descr i pt i on=” Cpu l oad t oo hi gh” >
 <appl y>
 <geq/ >
 <appl y>

 <mi n>
<bvar >i <bvar >
<l owl i mi t ><cn>0<cn></ l owl i mi t >
<uper l i mi t ><ci >%l en(l oad) </ ci ></ uper l i mi t >
<ci >l oad</ ci >

 </ mi n>
</ appl y>
<cn>12. 0</ cn>

 </ appl y>
 <! —checki ng f or condi t i on : mi n(l oad[i]) >=12. 0, wher e i = 0, l en(l oad) - - ! >
 </ Condi t i on>
</ Condi t i onSet >

Example 2:

Let’s assume that we want to monitor OS “Health” on an SGI node named fnsfo. We want to check some
components using the following Unix commands:

Number of cpu off –line:
mpadmi n - n| wc - l

Cpu load during last 15 min:

 51

upt i me | awk - F’ , ’ ‘ { pr i nt $NF} ’

/dev/root file system size
df / dev/ r oot | gr ep - v Fi l esyst em| awk ‘ { pr i nt $6} ’

Inetd daemon presence
ps - ef | gr ep i net d | gr ep - v gr ep| wc –l

The agent’s configuration file will look like the following:

<?xml ver si on=” 1. 0” ?>
<! DOCTYPE MA- coni f g Syst em “ agent . dt d” >
<MA- conf i g Name=” SGI _Heal t h” Updat e=” 180” >
<NCS Hear t beat =” 600” Por t =” 19997” Host =” ndem. f nal . gov” / >
 <Syst em Name=” OSHeal t h” Cl ust er =” l ocal host ” >
 <! —syst em i d i s “ OSHeal t h. f nsf o” - - ! >

<Moni t or edEl ement Name=” cpuSt at us” Host =” l ocal host ” Type=” Har dwar e” >
<! —moni t or ed el ement i d i s “ cpuSt at us. f nsf o. OSHeal t h. f nsf o” - - ! >

<Condi t i onSet >
<f n Name=” pl ug_i ns” Ar g=” mpadmi n - n| wc - l ” Ret Val =” i nt : onl i necount ” / >
 <Condi t i on St at e=” Down” SevLevel =” 6” Descr i pt i on=” At l east one cpu i s of f - l i ne” >

<appl y>
 <eq/ >
 <ci >onl i necount </ ci >
 <cn>4</ cn>

</ appl y>
<! —checki ng f or condi t i on : (onl i necount == 4) , wher e number of

pr ocessor s on f nsf o i s equal t o 4- - ! >
 </ Condi t i on>
</ Condi t i onSet >
</ Moni t or edEl ement >
<Moni t or edEl ement Name=” cpuLoad” Host =” l ocal host ” Type=” sysUsage” >
<! —moni t or ed el ement i d i s “ cpuLoad. f nsf o. OSHeal t h. f nsf o” - - ! >
<Condi t i onSet >
<f n Name=” pl ug_i ns” Ar g=” upt i me | awk - F’ , ’ ‘ { pr i nt $NF} ’ ” Ret Val =” f l oat : l oad” / >
 <Condi t i on St at e=” UP” SevLevel =” 4” Descr i pt i on=” Cpu l oad i s bet ween 8 and 15 dur i ng

l ast 15 mi nut es” >
<appl y>
<and/ >
 <appl y>

 <geq/ >
 <ci >l oad</ ci >
 <cn>8. 0</ cn>
 </ appl y>
 <appl y>
 <l t / >
 <ci >l oad</ ci >
 <cn>15. 0</ cn>

 </ appl y>
</ appl y>
<! —checki ng f or condi t i on : ((l oad>=8) && (l oad<15)) - - ! >

 </ Condi t i on>
 <Condi t i on St at e=” UP” SevLevel =” 6” Descr i pt i on=” Cpu l oad i s gr eat er t han 15 dur i ng l ast
15 mi nut es” >

<appl y>
 <geq/ >
 <ci >l oad</ ci >
 <cn>15. 0</ cn>

</ appl y>
<! —checki ng f or condi t i on : (l oad>=15) - - ! >

 </ Condi t i on>
</ Condi t i onSet >
</ Moni t or edEl ement >
<Moni t or edEl ement Name=” / dev/ r oot ” Host =” l ocal host ” Type=” Fi l eSyst em” >
<! —moni t or ed el ement i d i s “ / dev/ r oot . f nsf o. OSHeal t h. f nsf o” - - ! >
<Condi t i onSet >
<f n Name=” pl ug_i ns” Ar g=” df / dev/ r oot | gr ep - v Fi l esyst em| awk ‘ { pr i nt $6} ’ ”

Ret Val =” i nt : s i ze” / >
 <Condi t i on St at e=” UP” SevLevel =” 6” Descr i pt i on=” f i l e syst em i s mor e t hen 95% f ul l ” >
 <appl y>
 <gt / >
 <ci >si ze</ ci >
 <cn>95</ cn>
 </ appl y>

 52

 <! —checki ng f or condi t i on : (s i ze>95%) - - ! >
 </ Condi t i on>
</ Condi t i onSet >
</ Moni t or edEl ement >
<Moni t or edEl ement Name=” i net d” Host =” l ocal host ” Type=” Daemon” >
<! —moni t or ed el ement i d i s “ i net d. f nsf o. OSHeal t h. f nsf o” - - ! >
<Condi t i onSet >
 <f n Name=” pl ug_i ns” Ar g=” ps - ef | gr ep i net d | gr ep - v gr ep| wc - l ”

Ret Val =” i nt : i f Exi st ” / >
 <Condi t i on St at e=” Down” SevLevel =” 6” Descr i pt i on=” i net d daemons i s not r unni ng” >

<appl y>
 <neq/ >
 <ci >i f Exi st s</ ci >
 <cn>1</ cn>

</ appl y>
 </ Condi t i on>
</ Condi t i onSet >
</ Moni t or edEl ement >
</ Syst em>
</ MA- conf i g>

14.2.1 Starting/Stopping Plugins Agent
You can start a Plugins Agent in several ways. All Plugins Agent configuration files are placed in
/var/ngop/plugins_agent directory and may be started/stopped simultaneously by issuing

ngop st ar t / st op pl ugi ns_agent

In order to start individual agents, the following commands are used:
ngop st ar t / st op “ ngop pl ugi ns_agent –c / ngop/ var / pl ugi ns_agent / cf g_f i l e”

or
ngop pl ugi ns_agent –c cf g_f i l e

(you have to manually kill an agent if started it this way)

14.3 Ping Agent
NGOP comes packaged with a Ping type monitoring agent. The Ping Agent periodically sends ICMP
packets to nodes listed in it’s configuration file. It is also can perform route discovery and has an ability to
distinguish failure to ping the node from the failure to ping the switch, as well as discovery of simultaneous
multiple failures. In addition, if the remote machine is running the r st at d daemon, the Ping Agent can
determine the boot time of a node as well as it’s cpu load.

A template (pi ng. xml) configuration is supplied with NGOP. The primary function call that is made to
determine if a node is up is appropriately called i sUp. This function takes two optional arguments (time
delayed in minutes before the node will be decalred as “unpingbale” ; rsatd flag that inidicates either the
attempt to connect to remote rstatd daemon should be made). “ isUp” function returns an integer value. The
values returned reflect the various conditions that could be encountered when setting up and sending an
ICMP request to a node. These values are as follows:

• 0: the machine is Up
• 1: An ICMP request failed twice in the past N minutes, where N is defined as the update

interval.
• 2: The ICMP request resulted in lost packets
• 3: The request to create an ICMP socket failed.
• 4: The machine that is being pinged has been rebooted. This information can explain why a

machine was returning condition 1.
• 5: The ICMP request timed out
• 7: Unknown machine
• 8: The machine is unreachable as well as at least N other machines in the same cluster *

 53

• 9: The machine is unreachable because of the network problems *
* - is value could be returned only if isNetworkDown is used
To obtain remote performance values from r st at d, the function get Load is provided. This function
returns a floating point number that represents the CPU load on that machine.

To perform route discovery and determine multiple failueres the “ isNetworkDown” function is provided.
This function takes two arguments (the time interval betwen recteating the route table in min, and the
threshold that defines teh notion of “multiple” failures). This function is applied to an entire cluster rather
than to a particular host.

The table below is based on the pre-packaged configuration file for the Ping Agent.

Function Name Condition Event Value State Sev

Level
Description Action

IsNetworkDown Multiple nodes
(> N) became
unpingbale
during last M
min, but
network has
no problems

nodes:node1,node2,..
. nodeN

1 6 Multiple nodes
are unpingable.
Type:nodes:
node1, node2
...

email

 Multiple nodes
(> N) became
unpingbale
during last M
min, but it
happened
because of
some switches

switches:
switch1,switch2

1 6 Multiple nodes
are unpingable.
Possilble
network
problems!
Type:switches:
switch1,
switch2 ...

email

isUp Ping failed
during last N
minutes

1 0 2 Host is
unpingbale

email

 Lost Packets 2 1 4 The ICMP
request resulted
in lost packets

 Failed to create
raw socket

3 1 4 ICMP service
is not available

 Stored boot
time differs
than actual

4 1 5 Host was
rebooted

email

 Ping failed 5 1 4 Ping timed out
 Machine name

is unknown
7 1 0 Machine name

is unknown

 Ping failed, but
multiple nodes
are unpigbale
as well

8 0 2 Hos is
unpingbale

 Ping failed
because of
network

9 0 2 Host is
unpingable

 54

problems

getLoad CPU Load 20.0 1 6 CPU load high email

The following is the XML code that will implement the above table:
<MA- conf i g Updat e=" 180" Name=" Pi ngAgent MyCl ust er " Type=" Daemon" >
 <NCS Hear t beat =" 300" Por t =" 19997" Host =" l ocal host " / >
 <Syst em Name=" Pi ng" Cl ust er =" MyCl ust er " >
 <Condi t i onSet >
 <f n Name=" i sNet wor kDown" Ar g=" Ref r esh=720, Count er =2"
Ret Val =" st r : Type, st r : Names" / >
 <Condi t i on St at e=" 1" SevLevel =" 5" Descr i pt i on=" Mul t i pl e
nodes ar e unr eachabl e! Possi bl e net wor k pr obl em! " Event Name=" swi t ch"
Event Type=" Net wor k" >
 <appl y>
 <appl y>
 <eq/ >
 <ci >Type</ ci >
 <cn>" swi t ches" </ cn>
 </ appl y>
 </ appl y>
 <Act i on I D=" emai l " Host =" l ocal host " Type=" cent r al " >
 <Exec Name=" emai l "
Ar gument =" Addr ess: addr ess, Subj ect : Ngop_Repor t , Message: %Cl ust er : %Ser vi ceT
ype: %I D: %Descr i pt i on%Event Val ue ar e unr eachabl e" / >
 </ Act i on>
 </ Condi t i on>
 <Condi t i on St at e=" 1" SevLevel =" 6" Descr i pt i on=" Mul t i pl e nodes
ar e unr eachabl e! " Event Name=" nodes" >
 <appl y>
 <appl y>
 <eq/ >
 <ci >Type</ ci >
 <cn>" nodes" </ cn>
 </ appl y>
 </ appl y>
 <Act i on I D=" emai l " Host =" l ocal host " Type=" cent r al " >
 <Exec Name=" emai l "
Ar gument =" Addr ess: addr ess, Subj ect : Ngop_Repor t , Message: %Cl ust er : %Ser vi ceT
ype: %I D: %Descr i pt i on%Event Val ue ar e unr eachabl e" / >
 </ Act i on>
 </ Condi t i on>
 </ Condi t i onSet >
 <For Each=" Host " I n=" Cl ust er " Name=" Cl ust er A" Var =" { %Host } "
Fi l ename=" host sI nCl ust er s. xml " >

 <Moni t or edEl ement Name=" pi ng" Type=" Har dwar e" Host =" { %Host } " >
 <Condi t i onSet >
 <f n Name=" i sUp" Ar g=" Del ay=3, Rst at d=1" Ret Val =" i nt : x" / >
 <Condi t i on St at e=" 1" SevLevel =" 5" Descr i pt i on=" Host was
r eboot ed" >
 <appl y>
 <appl y>
 <eq/ >
 <ci >x</ c i >

 55

 <cn>4</ cn>
 </ appl y>
 </ appl y>
 <Act i on I D=" emai l " Host =" l ocal host " Type=" cent r al " >
 <Exec Name=" emai l "
Ar gument =" Addr ess: addr ess, Subj ect : Ngop_Repor t , Message: %Host : %Ser vi ceType
: %I D: %Descr i pt i on" / >
 </ Act i on>
 </ Condi t i on>

 <Condi t i on St at e=" 0" SevLevel =" 2" Descr i pt i on=" Host i s
unr eachabl e" >
 <appl y>
 <appl y>
 <eq/ >
 <ci >x</ c i >
 <cn>1</ cn>
 </ appl y>
 </ appl y>
 <Act i on I D=" emai l " Host =" l ocal host " Type=" cent r al " >
 <Exec Name=" emai l "
Ar gument =" Addr ess: addr ess, Subj ect : Ngop_Repor t , Keywor d: NodeUnusabl e, Messa
ge: %Host : %Ser vi ceType: %I D: %Descr i pt i on" / >
 </ Act i on>
 </ Condi t i on>
 <Condi t i on St at e=" 0" SevLevel =" 2" Descr i pt i on=" Host i s
unr eachabl e, possi bl e pr obl em wi t h net wor k" >
 <appl y>
 <appl y>
 <eq/ >
 <ci >x</ c i >
 <cn>9</ cn>
 </ appl y>
 </ appl y>
 </ Condi t i on>
 <Condi t i on St at e=" 0" SevLevel =" 2" Descr i pt i on=" Host i s
unr eachabl e f or " >
 <appl y>
 <appl y>
 <eq/ >
 <ci >x</ c i >
 <cn>8</ cn>
 </ appl y>
 </ appl y>
 </ Condi t i on>
 <Condi t i on St at e=" 1" SevLevel =" 4" Descr i pt i on=" Packet s
l ost " >
 <appl y>
 <appl y>
 <eq/ >
 <ci >x</ c i >
 <cn>2</ cn>
 </ appl y>
 </ appl y>
 </ Condi t i on>
 <Condi t i on St at e=" 1" SevLevel =" 4" Descr i pt i on=" I CMP Ser vi ce
i s unavai l abl e" >
 <appl y>

 56

 <appl y>
 <eq/ >
 <ci >x</ c i >
 <cn>3</ cn>
 </ appl y>
 </ appl y>
 </ Condi t i on>
 <Condi t i on St at e=" 1" SevLevel =" 4" Descr i pt i on=" Pi ng t i med
out " >
 <appl y>
 <appl y>
 <eq/ >
 <ci >x</ c i >
 <cn>5</ cn>
 </ appl y>
 </ appl y>
 </ Condi t i on>

 </ Condi t i onSet >
 </ Moni t or edEl ement >
 </ For >
 </ Syst em>
 <For Each=" Host " I n=" Cl ust er " Name=" Cl ust er A" Var =" { %Host } "
Fi l ename=" host sI nCl ust er s. xml " >
 <Syst em Name=" OSHeal t h" Cl ust er =" { %Host } " >
 <Moni t or edEl ement Name=" cpuLoad" Type=" sysUsage" Host =" { %Host } " >
 <Condi t i onSet >
 <f n Name=" get Load" Ar g=" " Ret Val =" f l oat : l oad" / >
 <Condi t i on St at e=" 1" SevLevel =" 6" Descr i pt i on=" Aver age
cpu l oad dur i ng l ast 15 mi n exceeds 4 on t he %Host " >
 <appl y>
 <gt / >
 <ci >l oad</ c i >
 <cn>4</ cn>
 </ appl y>
 <Act i on I D=" emai l " Host =" l ocal host " Type=" cent r al " >
 <Exec Name=" emai l "
Ar gument =" Addr ess: addr ess, Subj ect : Ngop_Repor t , Message: %Host : %Ser vi ceType
: %I D: %Descr i pt i on" / >
 </ Act i on>
 </ Condi t i on>
 <Condi t i on St at e=" 1" SevLevel =" 5" Descr i pt i on=" Aver age cpu
l oad i s bet ween 4 and 8 dur i ng l ast 15 mi n" >
 <appl y>
 <and/ >
 <appl y>
 <gt / >
 <ci >l oad</ c i >
 <cn>4</ cn>
 </ appl y>
 <appl y>
 <l eq/ >
 <ci >l oad</ c i >
 <cn>8</ cn>
 </ appl y>
 </ appl y>
 </ Condi t i on>
 </ Condi t i onSet >

 57

 </ Moni t or edEl ement >
 </ Syst em>
 </ For >
</ MA- conf i g>

This configuration file should conform to the DTD rules.

14.3.1 Ping Agent Starting/Stopping
The ping agent can be started using the ngop st ar t command:

$set up ngop
$ngop pi ng_agent –c <pi ng_agent xml f i l e name>

In addition, if the directory / var / ngop/ pi ng_agent exi st s, then simply issuing the following is
sufficient to start the ping agent(and other agents located in / var / ngop) :
 $ set up ngop
 $ ngop st ar t

14.4 Swatch Agents
A Swatch Agent is an agent that watches a log file for lines matching a regular expression, and takes some
action when this occurs (similar to swatch). Like the other agents in NGOP, an XML configuration file
controls the Swatch Agent’s behavior. An XML configuration file for each Swatch Agent is placed in a
separate file and should begin with the following XML declarations:

<?xml ver si on=” 1. 0” ?>
<! DOCTYPE Swat chAgent Conf i g SYSTEM “ swat chagent . dt d” >

The outermost tag of the file is <Swat chAgent Conf i g> , which includes the required name attribute.
name specifies the name of the monitoring agent.

The second outermost tag of the file is <NCS>, which includes the following attributes:

Hear t beat - specifies the hearbeat interval in seconds
Host - specifies the host name of the NCS to send events
Por t - specifies the port number on the above host

The third outermost tag of the file is <Fi l e>, which includes the following attributes:

f i l e - This lists the file the agent should watch for messages
f i l et ype – The valid values for f i l et ype are:
“ mul t i host ” – This indicates that a hostname match should be prepended to regular expressions

when expanding Host Type lists.
“ pl ai n” – This indicates that all regular expressions are to be used verbatim

A system description should follow the<Fi l e> tag. Several systems are described in the same XML
document. The <Syst em> tag indicates the beginning of the system definition. It contains multiple
monitored elements.

Once we are in the context of a given <Moni t or edEl ement >, we can specify rules about log file lines,
which will trigger events about that monitored element with an <ReRul e> tag. <ReRul e> tag has the
following required attributes:

Regexp – defines a regular expression

 58

St at e
SevLevel
Event Name
Event Val ue

and one optional attribute:
Act i onI D – defines action that should be executed when pattern is matched
An <Act i on> tag that should be within a <Swat chAgent Conf i g> tag describes an action.

In the Swatch Agent configuration instances of “ l ocal host ” will be replaced by the local host name.
This configuration file should conform to the DTD rules.

Example:
Let’s assume that we want to monitor a sysl ogd log file on a Linux machine. We want to watch for the
following patterns:

‘ ker nel : nf s: ser ver . * not r espondi ng’
‘ ypbi nd. * f ai l ed’
‘ shut down succeeded’
‘ s t ar t up succeeded’
‘ ker nel : . * i r q
‘ ker nel : . * r eset : success’
‘ ker nel : . * st at us t i meout : ’
‘ ker nel : . * dr i ve not r eady f or command’

<?xml ver si on=’ 1. 0’ ?>
<! DOCTYPE Swat chAgent Conf i g SYSTEM “ swat chagent . dt d” >
<Swat chAgent Conf i g name=” Swat chAgent ” >
<NCS Hear t beat =” 600” Host =’ ndem. f nal . gov’ Por t =’ 19997’ >
<Fi l e f i l e=’ / var / l og/ messages’ f i l et ype=’ pl ai n’ >
 <Syst em I D=’ OSHeal t h’ Cl ust er =’ l ocal host ’ >
 <Moni t or edEl ement Name=’ sysl ogd’ Type=’ Daemon’ Host =’ l ocal host ’ >
 <ReRul e Regexp=’ ker nel : nf s: ser ver . * not r espondi ng’ Event Name=’ nf s’

 St at e=’ 1’ SevLevel =’ 6’ / >
 <ReRul e Regexp=’ ypbi nd. * f ai l ed’ Event Name=’ ypbi nd’ St at e=’ 1’ SevLevel =’ 4’ / >
 <ReRul e Regexp=’ shut down succeeded’ St at e=’ 1’ SevLevel =’ 5’ / >
 <ReRul e Regexp=’ st ar t up succeeded’ St at e=’ 1’ SevLevel = ‘ 0’ / >
 <ReRul e Regexp=’ ker nel : . * i r q t i meout ’ St at e=’ 1’ SevLevel = ‘ 6’ / >
 <ReRul e Regexp=’ ker nel : . * r eset : success’ St at e=’ 1’ SevLevel = ‘ 6’ / >
 <ReRul e Regexp=’ ker nel : . * st at us t i meout : ’ St at e=’ 1’ SevLevel = ‘ 6’ / >
 <ReRul e Regexp=’ ker nel : . * dr i ve not r eady f or command’ St at e=’ 1’

 SevLevel = ‘ 6’ / >
 <ReRul e Regexp=’ ker nel : . * Unabl e t o l oad i nt er pr et er / l i b/ l d- l i nux. so. 2’

 St at e=’ 1’ SevLevel = ‘ 6’ / >
 </ Moni t or edEl ement >
 </ Syst em>
</ Fi l e>
</ Swat chAgent Conf i g>

14.4.1 Starting/Stopping Swatch Agent
You can start Swatch Agent in several ways. All Swatch Agent configuration files are placed in the
/var/ngop/swatch_agent directory and could start (stop) simultaneously by issuing

ngop st ar t / st op swat ch_agent

In order to start individual agents , the following commands are used:
ngop st ar t / st op “ ngop swat ch_agent –c / ngop/ var / swat ch_agent / cf g_f i l e”

or
ngop swat ch_agent –c cf g_f i l e

 59

The agent must be killed manually if started by the latter.

14.5 URL Agent
The URL Agent scans given URL’s for reachability. Like the other agents in NGOP, an XML
configuration file controls the URL Agent’s behavior. An XML configuration file for each URL Agent is
placed in a separate file and should begin with the following XML declarations:

<?xml ver si on=” 1. 0” ?>
<! DOCTYPE URLAgent Conf i g SYSTEM “ URLagent . dt d” >

The outermost tag of the file is <URLAgent Conf i g> , which includes the required name attribute.
name specifies the name of the monitoring agent. An optional Scan attribute can also be specified,
which refers to the time between scans in seconds. This configuration file should conform to the DTD rules.

Example:

<?xml ver si on=" 1. 0" ?>
<! DOCTYPE URLAgent Conf i g SYSTEM " URLagent . dt d" >

<URLAgent Conf i g Name=" f ast _URL_agent _l ocal host " Scan=" 900" >

 <NCS Host =" ndem. f nal . gov" Por t =" 19997" Hear t beat =" 300" / >

 <! - - I t ems we wat ch ever y 15 mi nut es - - >

 <Act i on I D=" emai l " Local =" emai l _mi scomp" Type=" cent r al " >
 <Exec Name=" emai l " Ar gument =" Addr ess: mi scomp@f nal . gov,
 ngop- t eam@f nal . gov, Subj ect : Ngop_Repor t ,
 Message: %Host : %Ser vi ceType: %I D: " ; %Descr i pt i on" ; " / >
 </ Act i on>

 <Act i on I D=" emai l " Local =" emai l _cdweb" Type=" cent r al " >
 <Exec Name=" emai l " Ar gument =" Addr ess: oper at or @f nal . gov,
 csi - gr oup@f nal . gov, cdweb@f nal . gov,
 ngop- t eam@f nal . gov, t om@pager . f nal . gov, Subj ect : Ngop_Repor t ,
 Message: %Host : %Ser vi ceType: %I D: " ; %Descr i pt i on" ; " / >
 </ Act i on>

 <Act i on I D=" emai l " Local =" emai l _csd" Type=" cent r al " >
 <Exec Name=" emai l " Ar gument =" Addr ess: oper at or @f nal . gov,
 di ck@f nal . gov, ngop- t eam@f nal . gov,
 Subj ect : NGOP- Remedy_webser ver _unavai l abl e,
 Message: Remedy_webser ver _unavai l abl e_on_%Host : %Ser vi ceType: %I D:
 " ; %Descr i pt i on" ; " / >
 </ Act i on>

 <Act i on I D=" emai l " Local =" emai l _ngop" Type=" cent r al " >
 <Exec Name=" emai l " Ar gument =" Addr ess: ngop- admi n@f nal . gov,
 Subj ect : NGOP_URL_Repor t , Message: %Host : %Ser vi ceType: %I D: " ; %Descr i pt i on" ; " / >
 </ Act i on>

 <Syst em Name=" www" Cl ust er =" WWW" >

 <Moni t or edEl ement Name=" mai npage" Type=" webpage" Host =" www0" >
 <URLFai l Rul e Act i onLocal =" emai l _cdweb" Hr ef =" ht t p: / / www. f nal . gov/ "
 RegExp=" Fer mi l ab"
 / >
 </ Moni t or edEl ement >

 <Moni t or edEl ement Name=" t el ephone" Type=" webpage" Host =" www0" >
 <URLFai l Rul e Act i onLocal =" emai l _cdweb"
 Hr ef =" ht t p: / / www- t el e. f nal . gov/ cgi / bi n/ t el ephone. scr i pt ?f or mat =t ext &
 Name=har r y& whi ch=l ast & exact =& out put =name"

 60

 RegExp=" TOMDI CKANDHARRY"
 / >
 </ Moni t or edEl ement >

 <Moni t or edEl ement Name=" di scl ai mer " Type=" webpage" Host =" www0" >
 <URLFai l Rul e Act i onLocal =" emai l _cdweb"
 Hr ef =" ht t p: / / www. f nal . gov/ pub/ di scl ai m. ht ml "
 RegExp=" Unaut hor i zed at t empt s"
 / >
 </ Moni t or edEl ement >

 <Moni t or edEl ement Name=" di r ect or at e" Type=" webpage" Host =" www0" >
 <URLFai l Rul e Act i onLocal =" emai l _cdweb" Hr ef =" ht t p: / / www. f nal . gov/ di r ect or at e/ "
 / >
 </ Moni t or edEl ement >

 <Moni t or edEl ement Name=" f aw" Type=" webpage" Host =" www0" >
 <URLFai l Rul e Act i onLocal =" emai l _cdweb" Hr ef =" ht t p: / / www. f nal . gov/ f aw/ "
 RegExp=" Wor k Resour ces"
 / >
 </ Moni t or edEl ement >

 <Moni t or edEl ement Name=" st ock" Type=" webpage" Host =" www0" >
 <URLFai l Rul e Act i onLocal =" emai l _cdweb"

 Hr ef =" ht t p: / / www-
st ock. f nal . gov/ cgi bi n/ st ock. scr i pt ?st ock_i t em=wr ench& mat ch=and&
 f or mat =ht ml & debug=f al se"
 RegExp=" VI CE. GRI P"
 / >
 </ Moni t or edEl ement >

 </ Syst em>

</ URLAgent Conf i g>

14.6 Monitoring Agent API
Users can write their own monitoring agents using the supplied monitoring agent API that comes with the
NGOP product. This chapter discussed the monitoring agent API and gives examples.

14.6.1: API Description

NGOP Monitoring Agent API provides way for users to write their own Monitoring Agent that will
communicate with NGOP Central Server.

The MAClient Class performs all the communication between the Monitoring Agent and the NGOP Central
Server. The user has to create the object of this class. The MAClient Class provides the following methods:

• Setting MA attributes
• Describing configuration
• Registering with NGOP Central Server
• Sending Events to NGOP Central server
• Performing Action
• Sending request to NCS to perform Action

Only a Python binding API is provided in the prototype version.

 61

14.6.1.1: MAClient Class

In order to use the MA API, user applications should import the MACl i ent class from the MA_API
module:

f r om MA_API i mpor t MACl i ent

14.6.1.2: MAClient methods
This section describes the methods available for the MACl i ent class.

15.6.1.2.1 MACl i ent ()

The constructor MACl i ent () creates an MACl i ent object and establishes communication with the
NGOP Central Server.
Synopsis: MACl i ent ()
Arguments: None
Return Value: MACl i ent object.

15.6.1.2.2 set MAAt t r i b()

This method sets the monitoring agent attributes such as name, heartbeat rate, central server host and port.
Synopsis: set MAAt t r i b(maName, hear t beat , ncsHost , ncsPor t , t ype)
Arguments:

maName: String; Monitoring Agent name
hear t beat : String; interval in seconds to send a heartbeat message to the NCS.
ncsHost : String; NCS host
ncsPor t : String; NCS port
type: String,MA type (Cron or Daemon)

Return Value: None.

15.6.1.2.3 addSyst em()

This method adds system information to the list of monitored objects.
Synopsis: addSyst em(sysName, c l ust er Name)
Arguments:

sysName: String; name of the system.
cl ust er Name: String; name of the cluster.

Return Value: None.

15.6.1.2.4 addME()

This method adds monitored elements to the system configuration.
Synopsis: addME(sysName, c l ust er Name, meName, meType, host)
Arguments:

sysName: String; name of the system.

 62

cl ust er Name: String; name of the cluster.
meName: String: monitored element name.
meType: String: monitored element type.
host : String: host name where the monitored element is located.

Return Value: None.

15.6.1.2.5 r egi st er ()

This method sends the initial configuratio to the NGOP Central Server.
Synopsis: r egi st er ()
Arguments: None
Return Value: None

15.6.2.6 send_event ()

This method sends an event message to the NGOP Central Server.
Synopsis: send_event (event Di ct , sysName, cl ust er Name, meName, meHost)
Arguments:
event Di ct : Dictionary: Describes the event with the following dictionary keys:
 Event Type – String
 Event Name – String
 Event Val ue – String
 St at e – Integer (-1,0,1)
 1 - undefined
 0 - up
 1 - down
SevLevel – Integer (0-6).
 0 – None
 1 - NotInService
 2 - Unknown
 3 - Undefined
 4 - Warning
 5 - Error
 6 - Alert
 sysName: String: name of the system
 c l ust er Name: String: name of the cluster

meName: String: name of the monitored element
meHost : String: name of the host where the monitored element is located.
meName, meHost ar e set t o None i f event i s r el at ed t o
syst em st at e
Return Value: 2-type (st at us ,r eason)
 st at us : Integer
 0 – failure
 1 – success
 r eason: String; Reason for failure or NULL.

15.6.1.2.6 do_act i on()

This method sends an event message to the NGOP Central Server.

 63

Synopsis:
 do_act i on(sysName, cl ust er Name, meName, meHost , event Di ct , act i onDi ct)
Arguments:
event Di ct : Dictionary: Describes the event with the following dictionary keys:
 Event Type – String
 Event Name – String
 Event Val ue – String
 St at e – Integer (-1,0,1)
 1 - undefined
 0 - up
 1 - down
 SevLevel – Integer (0-6).
 0 – None
 1 - NotInService
 2 - Unknown
 3 - Undefined
 4 - Warning
 5 - Error
 6 - Alert
 act i onDi ct : Dictionary: Describes the action with the following keys:
 Act i onI D – String: The action id.
 ExecName – String: Name of the command to be executed.
 Ar gLi st – String: The argument list to ExecName.
 Act i onType – String: Either “ l ocal ” or “cent r al ” .

 sysName: String: name of the system
 c l ust er Name: String: name of the cluster
 meName: String: name of the monitored element.
 meHost : String: name of the host where the monitored element is located.
 meName, meHost ar e set t o None i f event i s r el at ed t o
syst em st at e

Return Value: None.

15.6.1.2.7 st op()

This method notifies the NCS that it ended normally .
Synopsis: st op()
Arguments:
None
Return Value: None

14.6.2: MA API Example
This section details a monitoring agent written using the API. In this example, let’s assume that we want to
monitor the system “mySyst em” on the cluster “myCl ust er ” . Let’s say the cluster consists of 100 nodes
named myWor ker 1, myWor ker 2, ..., myWor ker 100. A monitored element called myDaemon is
running on each the node in the cluster. When myDaemon dies or restarts we would like to send an event
message to the NGOP Central Server.

Here is the code to perform this task:

i mpor t MA_API

 64

i mpor t t i me
i mpor t sys
DOWN=0
UP=1
UNKNOWN=- 1
def i sDaemonAl i ve(sel f , name, node) :
 #user pr ovi des way t o ver i f y t hat t he daemon i s al i ve on t he node

 r et ur n st at e, descr i pt i on
 #st at e coul d be Down, Up, Unknown
 #descr i pt i on shoul d not have bl anks
i f __name__==” __mai n__” :
 checkTi me=myCheck
 # moni t or i ng i nt er val
 maName=” myAgent ”
 #name of t he moni t or i ng agent
 sysName=” mySyst em”
 #syst em name
 c l ust er Name=” myCl ust er ”
 #cl ust er name
 nodeName=” myWor ker ”
 #common node name
 mi nI dx=1
 #node number st ar t s wi t h t hi s i ndex
 maxI dx=100
 #node number ends wi t h t hi s i ndex
 meName=” myDaemon”
 #name of moni t or ed el ement
 meType=” Daemon”
 #t ype of moni t or ed el ement
 hear t beat =” 300”
 #hear t beat r at e i n sec
 ser ver Host =’ ngop’
 ser ver Por t =” 19997”
 #NGOP Cent r al Ser ver host and por t

 c l =MA_API . MACl i ent ()
 #cr eat es MACl i ent obj ect

 c l . set MAAt t r i b(maName, hear t beat , ser ver Host , ser ver Por t)
 #set s MA at t r i but es

 c l . addSyst em(sysName, cl ust er Name)
 #conf i gur es t he syst em
 ol dSt at eLi st =[]
 #hol d pr evi ous st at e of t he moni t r ed el ement
 f or i i n r ange(mi nI dx, maxI dx) :
 c l . addME(sysName, cl ust er Name, meName, meType, nodeName+r epr (i))
 #conf i gur es syst em moni t or ed el ement s l i st
 ol dSt at eLi st . append(UP)
 # set s al l st at e t o UP

 c l . r egi st er ()
 #r egi st er s moni t or i ng agent wi t h NGOP Cent r al Ser ver

 whi l e 1:

 f or i i n r ange(mi nI dx, maxI dx) :

 st at e, descr i pt i on=i sDaemonAl i ve(meName, nodeName+r epr (i))
 i f ol dSt at eLi st [i] ==st at e:
 cont i nue #not hi ng has changed
 event Di ct ={ ’ Event Type’ : meType, ‘ Event Name’ : meName, \
 ‘ St at e’ : st at e, ’ SevLevel ’ : 0}
 event Di ct [’ Descr i pt i on’] =descr i pt i on

 st at us, r eason=cl . sendEvent (event Di ct , sysName, cl ust er Name,
 meName, nodeName)

 #sends event t o NGOP CS

 i f not st at us: pr i nt “ Er r or : ” , r eason

 65

oldStateList[i]=state

 t i me. sl eep(checkTi me)

14.6.3 Starting/Stopping Your Agent
You can start your Agent issuing the following command:

ngop your_python_code.py &

Chapter 15: Action Server
An Action Server has the following features:

• It gets configuration information from the CFMS
• It gets action requests from the NCS
• It verifies user authorization to request the actions
• It verifies that monitored object accosiated with an anction is not marked as “known bad”
• It performs actions
• It notifies the NCS about success/failure of performed actions

There are several configuration files that contain general information needed for the Action Servers. These
files will be downloaded into a designated configuration area during the NGOP Action Server startup.

15.1 Action Server Configuration File
The Action Server configuration file contains the following information:

<?xml ver si on=' 1. 0' ?>
<! DOCTYPE AS_cf g SYSTEM " ser ver . dt d" >
<AS_cf g DebugLevel =" 3" >
 <Cl i ent Por t =" 19996" Host =" ngop" Name=" NCSCl nt " / >
 <Cl i ent Por t =" 8080" Host =" ngop" Name=" CFMSCl nt " / >
 <Cf gXml CvsRep=" conf i gxml " Wr kDi r =" . ngop_act i on" ExcDi r =" scr i pt s"
CvsRoot =" : pser ver : ngop@ngop. f nal . gov: / home/ ngop/ Reposi t or y
" Rol e=" def aul t " / >
 <Act i onObj ect Li st >
 <Moni t or edEl ement Cl ust er =" NGOP" Syst em=" NGOPSer vi ce" Host =" l ocal host "
Name=" act i on" / >
 <Host Name=” l ocal host ” / >
 </ Act i onObj ect Li st >
</ AS_cf g>

The AS_cfg tag has one optional attribute that defines debug level output (0 –6) of the action server log
files. Two log files (ActionServer_cfgname.out and ActionServer_cfgname.err) are created automaticaly in
~/Log/ActionServer_cfgname directory, where “cfgname” is the name of configuration file. If directory
doesn’ t exist it will be created. Log files are rotated daily: the old files are moved to “name.timestamp”
files.
Action Server should be connected to NCS, so first <Cl i ent > tag is required. The second <Cl i ent > tag
is optional and is needed if Action Server connects to CFMS. The <Cl i ent > tag has the following
attributes: service tcp port, host name of the node where service is running and service name
(NCSCl nt / CFMSCl nt). The Cf gXml tag is required. It defines the parameters that will be used to create
local configuration and connect to CVS repository. Cf gXml tag includes the following attributes: name of
the root dirctory (required), name of ngop configuration cvs repository (requred), CVSROOT definition
(optional), tag of current configuration role. The ActionObjectList tag is optional. If it is present it contains

 66

the list MonitoredElements, Hosts, Systems and Cluster tags. If at least one of the monitored objects listed
here is declared as “known bad” (see known status) the all actions will be supressed until the time when the
object becomes “good” .

This configuration file should conform to the DTD rules.

15.2 Starting/Stopping Action Server
An administrator can start Action Server in several ways. Action Server configuration files are placed in
/var/ngop/action directory and could start (stop) simultaneously by issuing

ngop st ar t / st op act i on

or
 ngop act i on –c cf g_f i l e &

If the agent is started by the latter command, the agent can only be killed manually.

15.3 File authorized.xml
The aut hor i zed. xml configuration file contains information about the users who are authorized to
perform certain actions via an Action Server. Each user belongs to an authorization group.
If a user has requested an action but is not listed in the aut hor i zed. xml configuration file, the request
will be denied. The aut hor i zed. xml file requires the following declaration and tags:

<?xml ver si on=’ 1. 0’ ?>
<! DOCTYPE NGOPAct i on SYSTEM “ act i on. dt d” >
<NGOPAct i on>
<Aut hor i zat i on_Fi l e>
 <Aut hor i zedGr oup I D=" ngop_admi n" >
 <User Name=" user _name" / >
 . . .
 </ Aut hor i zedGr oup>
</ Aut hor i zat i on_Fi l e>
</ NGOPAct i on>

An <Aut hor i zat i on_Fi l e> tag contains zero or more <Aut hor i zedGr oup> tags. These tags have
a required attribute of I D and contain zero or more user names (<User >). This configuration file should
conform to the DTD rules.

Example:
Two groups (ngop_admi n and oss_admi n) are described in this example. A list of authorized users is
attached to each group.

<Aut hor i zat i onFi l e>
<Aut hor i zedGr oup I D=” ngop_admi n” >
 <User Name=” smi t h” / >
 <User Name=” j ones” / >
 </ Aut hor i zedGr oup>
 <Aut hor i zedGr oup I D=” oss_admi n” >
 <User Name=” br own” / >
 <User Name=” j ohnson” / >
</ Aut hor i zedGr oup>

</AuthorizationFile>

 67

15.4 File action.xml
The act i on. xml configuration file describes actions which consist of executables or scripts, a host where
they are located, and the groups that are authorized to perform this action. The act i on. xml file requires
the following declaration and tags:

<?xml ver si on=’ 1. 0’ ?>
<! DOCTYPE NGOPAct i on Syst em “ act i on. dt d” >
<NGOPAct i on>
<Act i on_Fi l e>
<NGOPAct i on>
<Act i on_Fi l e>
 <Act i on I D=" act i on_name" >
 <Host Name=" host _name" >
 <Aut hor i zedGr oup I D=" gr oup_name" / >
 . . .
 <Exec Pat h=" command_name" / >
 . . .
 </ Host >
 </ Act i on>
</ Act i on_Fi l e>

An <Act i on> tag has one required attribute (I D) and contains several <Host > tags. A <Host > tag has
a Name attribute and contains one or more <Aut hor i zedGr oup> tags (with an I D attribute) and
<Exec> tags (with a Pat h attribute). This configuration file should conform to the DTD rules.

Example:

Two actions are defined in this example. The first action allows oper at or and oss_admi n groups to
send email via an Action Server running on the host ndem..

<Act i onFi l e>
<Act i on I D=” emai l ” >

<Host Name=” ndem” >
<Aut hor i zedGr oup I D=” oper at or ” / >
<Aut hor i zedGr oup I D=” oss_admi n” / >
<Exec Pat h=” scr i pt s/ emai l ” >

</ Host >
</ Act i on>
</ Act i onFi l e>

 68

Chapter 16: Controlling the NGOP Daemons
The NGOP package requires multiple processes to be running on multiple systems:

• The NCS, Broker, and Action Server on a central service machine.
• Ping agents on some machines which watch over other machines.
• Monitoring agents local to various systems.

To facilitate this, NGOP provides a simple mechanism for an administrator to write down what NGOP
processes should be running on a given system, and to start them, stop them, and make sure that they are
still running. This mechanism is also integrated with the UPS packaging system which has an umbrella
mechanism to start processes needed for various UPS products at system startup.

16.1: The /var/ngop Directory.
The start/stop mechanism by default uses a directory tree under / var / ngop on each system to record
what processes should be running on that system. The location of this directory can be changed by setting
the environment variable NGOP_START_DI R.

As an example, suppose that you wanted to have two swat ch_agent processes each running a different
configuration file, and one pl ugi ns_agent process:

ngop swat ch_agent –c cf g1. xml
ngop swat ch_agent –c cf g2. xml
ngop pl ugi ns_agent –c cf g3. xml

To configure this you would place the configuration files under / var / ngop as follows:
/ var / ngop/ swat ch_agent / cf g1. xml
/ var / ngop/ swat ch_agent / cf g2. xml
/ var / ngop/ pl ugi ns_agent / cf g3. xml

The directory tree should have r +w permissions for the ui d who will be running the NGOP processes.

16.2 Starting the Agents
Once the directory structure has been setup under / var / ngop, the agents are started by doing one of the
following:
ups st ar t ngop

or
set up ngop
ngop st ar t

When the command is issued, an informational message will be displayed to the screen for each process
started. The start/stop mechanism also records which agents have been started with their process ID
numbers in / var / ngop/ . pi ds. <host name>.

16.3 Monitoring the Agents
The start/stop mechanism provides a means to monitor the agents:
ups st at us ngop

or

set up ngop

ngop st at us

Below is an example of the output produced by the st at us command:
$ ngop st at us

 69

Runni ng:
PI D COMMAND
9707 ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g1. xml
9710 ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g2. xml
9713 ngop pl ugi ns_agent –c / var / ngop/ pl ugi ns_agent / cf g3. xml

If one of the agents has died, it will still show in the listing:

$ ngop st at us
Runni ng:
PI D COMMAND
9707 ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g1. xml
di ed ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g2. xml
9713 ngop pl ugi ns_agent –c / var / ngop/ pl ugi ns_agent / cf g3. xml

There is also a check command which will obtain the status of the agents and restart those that have died:

$ ngop check
Runni ng:
PI D COMMAND
9707 ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g1. xml st i l l r unni ng
9710 ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g2. xml di ed, r est ar t i ng . . .
9713 ngop pl ugi ns_agent –c / var / ngop/ pl ugi ns_agent / cf g3. xml st i l l r unni ng

16.4 Stopping the Agents
Once the directory structure under / var / ngop has been setup and the agents have been started as in the
previous section, stopping the agents is accomplished with one of the following commands:

ups st op ngop

 or
set up ngop
ngop st op

The stopping mechanism looks under / var / ngop/ . pi ds. <host name> for agents that have been
started. Informational messages are displayed as each agent is stopped:

$ngop st op
St oppi ng: ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g1. xml
St oppi ng: ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g2. xml
St oppi ng: ngop pl ugi ns_agent –c / var / ngop/ pl ugi ns_agent / cf g2. xml

16.5 Disabling/Enabling Agents
It is sometimes desirable to disable an agent, but not to discard it’s configuration. This is accomplished
with the ngop di sabl e command. The agent is enabled with ngop enabl e. The argument to these
commands is either the full NGOP command (as listed by ngop st at us) in quotes, or the base name of
the configuration file (cfg2 for example):

$ ngop st at us
Runni ng:
PI D COMMAND
9707 ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g1. xml
9710 ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g2. xml
9713 ngop pl ugi ns_agent –c / var / ngop/ pl ugi ns_agent / cf g3. xml

$ ngop di sabl e “ cf g2”
St oppi ng: ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g2. xml

$ngop st op

 70

St oppi ng: ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g1. xml
St oppi ng: ngop pl ugi ns_agent –c / var / ngop/ pl ugi ns_agent / cf g2. xml

$ngop st ar t
St ar t i ng: ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g1. xml
Di sabl ed: ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g2. xml
St ar t i ng: ngop pl ugi ns_agent –c / var / ngop/ swat ch_agent / cf g3. xml

$ngop enabl e “ cf g2”
St ar t i ng: ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g2. xml

16.6 Controlling Agents on Remote Hosts
NGOP agents often run on multiple hosts. The ngop r emot e command is used to stop, start, or modify
the behaviour of NGOP agents on remote hosts provided that the user issuing the command has permission
to r sh to those hosts.

The format of the r emot e command is:
 ngop r emot e [- l user] <host >| <cl ust er > |
 ngop r emot e [- l user] <host _pr ef i x>: <st ar t _r ange>- <end_r ange>

For example, to start nodes f cdf 09, f cdf 10, f cdf 11, f cdf 12, and f cdf 13, the following command
is used:
 ngop r emot e f cdf : 09- 13

If the above command should be executed as the user ngopuser , the following command would be used:
 ngop r emot e –l ngopuser f cdf : 09- 13

If the “ tictac” tools for the farms are being used, the tictac cluster name can be used:
 ngop r emot e –l ngop st ar t –c f cdf _cl ust er

16.7 Starting/Stopping Individual Agents
The st ar t and st op commands can be given a string to match that will pick servers to start or stop. For
example, to stop a swat ch_agent using the configuration file / var / ngop/ swat ch_agent /
cf g1. xml :

$ngop st op “ cf g1”

St oppi ng: ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g1. xml

$ngop st at us

Runni ng:

PI D COMMAND
di ed ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g1. xml
9708 ngop swat ch_agent –c / var / ngop/ swat ch_agent / cf g2. xml
9713 ngop pl ugi ns_agent –c / var / ngop/ pl ugi ns_agent / cf g3. xml

With multiple hosts, this can result in a more complicated string. For example, to kill the deamon in the
above example on hosts f cdf 09- 13, you would issue the following command:

ngop r emot e ‘ st op cf g1’ f cdf 09- 13

 71

Appendix A

<For> DTD
<! ELEMENT For (#PCDATA| For *) >
<! ATTLI ST For
 Each CDATA #REQUI RED
 I n CDATA #REQUI RED
 Name CDATA #REQUI RED
 Var CDATA #REQUI RED
 Fi l e CDATA #I MPLI ED
>

<Apply> DTD
<! ELEMENT appl y ((sum | mi n | max | di v i de | t i mes | pl us | mi nus | and | or | eq |
neq | gt | geq | l t | l eq | i n | not i n) , (appl y | cn | c i) *) >

<! ELEMENT sum (bvar , upl i mi t , l owl i mi t , (appl y | c i | cn) *) >
<! ELEMENT mi n (bvar , upl i mi t , l owl i mi t , (appl y | c i | cn) *) >
<! ELEMENT max (bvar , upl i mi t , l owl i mi t , (appl y | c i | cn) *) >
<! ELEMENT bvar EMPTY >
<! ELEMENT upl i mi t (appl y | cn) >
<! ELEMENT l owl i mi t (appl y | cn) >
<! ELEMENT di v i de EMPTY >
<! ELEMENT t i mes EMPTY >
<! ELEMENT pl us EMPTY >
<! ELEMENT mi nus EMPTY >
<! ELEMENT and EMPTY >
<! ELEMENT or EMPTY >
<! ELEMENT eq EMPTY >
<! ELEMENT neq EMPTY >
<! ELEMENT gt EMPTY >
<! ELEMENT geq EMPTY >
<! ELEMENT l t EMPTY >
<! ELEMENT l eq EMPTY >
<! ELEMENT i n EMPTY >
<! ELEMENT not i n EMPTY >
<! ELEMENT ci (#PCDATA) >
<! ELEMENT cn (#PCDATA) >

<Action> DTD
<! ELEMENT Act i on (Exec) + >
<! ATTLI ST Act i on
 I D CDATA #REQUI RED
 Host CDATA #REQUI RED
 Met hod (manual | aut omat i c) ' aut omat i c '
 Type (l ocal | cent r al) ' cent r al '
 Count er CDATA #I MPLI ED
 Gap CDATA #I MPLI ED
 Del ay CDATA #I MPLI ED
>
<! ELEMENT Exec EMPTY >
<! ATTLI ST Exec

Name CDATA #REQUI RED
Ar gument CDATA #REQUI RED

>

<If> DTD
<! ELEMENT I f (#PCDATA| El se?) >

 72

<! ATTLI ST I f
 Cond CDATA #REQUI RED “ ’ { %Rol e} ’ ==(! =) ’ r ol e_name’ ”
>
<! ELEMENT El se (#PCDATA) >

NCS Configuration File DTD
<! ELEMENT NCS_cf g (NCS, Cl i ent ?, Agent) >
<! ATTLI ST NCS_cf g
 DebugLevel CDATA #I MPLI ED
>
<! ELEMENT NCS EMPTY >
<! ATTLI ST NCS
 TcpPor t CDATA #REQUI RED
 UdpPor t CDATA #REQUI RED
>
<! ELEMENT Cl i ent EMPTY >
<! ATTLI ST Cl i ent
 Name " Ar chi ver " #I MPLI ED
 Por t CDATA #REQUI RED
 Local Log CDATA “ l og. l og”
 Host CDATA “ l ocal host ”
>

<! ELEMENT Tr ust edDomai n (Domai n) +>
<! ELEMENT Domai n Empt y>
<! ATTLI ST Domai n
 Name CDATA #REQUI RED
>

<! ELEMENT Agent (Act i on ?) >
<! ATTLI ST Agent
 Updat eI nt CDATA “ 2”
 Tot al MsgNum CDATA “ 400”
 Tot al MsgLengt h CDATA “ 100000”
 Wi ndow CDATA “ 5”
 Mi ssedHear t beat “ 3”
>
<! ELEMENT Act i on (Exec) >
<! ATTLI ST Act i on
 I D CDATA #REQUI RED
 Host CDATA #I MPLI ED
>
<! ELEMENT Exec EMPTY >
<! ATTLI ST Exec
 Ar gument CDATA #REQUI RED
 Name CDATA #REQUI RED
>

Locator Server DTD
<! - - Locat or Ser ver def i ni t i ons st ar t s - - >
<! ELEMENT LS_cf g (LS) >
<! ATTLI ST LS_cf g
 DebugLevel CDATA " 1"
>
<! - - Debug Level f r om 0 t o 3 - - >
<! ELEMENT LS EMPTY >
<! ATTLI ST LS
 I ni t Wai t CDATA " 120"
 MCPor t CDATA " 3111"
 SEPor t CDATA " 20000"
>
<! - - t i me i n seconds Locat or Ser ver wi l l wai t on st ar t up f or St at us Engi nes t o r egi st er -
- >
<! - - MCPor t opened f or Moni t oi r ng Cl i ent connect i ons - - >
<! - - SEPor t opened f or St at us Engi ne Connect i ons - - >

 73

<! - - Por t s st ar t i ng f r om 70001 wi l l be al l ocat ed f or St at us Engi nes t o open connect i on
wi t h Moni t or i ng Cl i ent s - - >
<! - - Locat or Ser ver def i ni t i ons ends - - >

Status Engine Configuration File DTD
<! - - St at us Engi ne def i ni t i ons st ar t s - - >
<! ELEMENT st at us_engi ne_cf g ((Cl i ent) +, (Cf gXml | Col or Map | Cf gEvnt | I conMap)) >
<! ATTLI ST st at us_engi ne_cf g
 DebugLevel CDATA " 1"
>
<! - - Debug Level f r om 0 t o 6 - - >
<! ELEMENT Cl i ent EMPTY >
<! ATTLI ST Cl i ent
 por t CDATA #REQUI RED
 host CDATA #REQUI RED
 name (LSCl nt | NCSCl nt | CFMSCl nt) #REQUI RED
>
<! - - Por t and host f or Locat or Ser ver , Cent r al Ser ver , and CFMS - - >
<! ELEMENT Cf gXml EMPTY >
<! ATTLI ST Cf gXml
 cvsRep CDATA #REQUI RED
 wr kDi r CDATA #REQUI RED
 cvsRoot CDATA #I MPLI ED
 r ol e CDATA #REQUI RED
 cf gRoot CDATA #REQUI RED
>
<! - - Locat i on def i ni t i on f or conf i gur at i on f i l es- - >
<! - - cvsRep ei t her name of cvs r eposi t or y or r oot di r ect or y f or al l t he conf i gur at i on
f i l es - - >
<! - - wr kDi r par ent di r ect or y f or cvsRep - - >
<! - - cvsRoot CVSROOT i f cvs i s i n use - - >
<! - - st at us engi ne r ol e - - >
<! - - cf gRoot - name of t he r oot moni t or ed obj ect - - >

<! ELEMENT Cf gEvnt EMPTY >
<! ATTLI ST Cf gEvnt
 Mai l CDATA #I MPLI ED
 Event Ret ent i onI nt CDATA " 24"
 WeekendRet ent i onI nt CDATA " 72"
 WeekendDay (Sat | Mon| Tue| Wed| Thu| Fr i | Sat) " Fr i "
 WeekendSt ar t Ti me
(0| 1| 2| 3| 4| 5| 6| 7| 8| 9| 10| 11| 12| 13| 14| 15| 16| 17| 18| 19| 20| 21| 22| 23| 24) " 17"

>
<! - - Event Ret ent i onI nt : f or how l ong event s and al ar ms (hour s) shoul d be kept i n memor y - -
>
<! - - Weekend def i ni t i on: f or how l ong event s and al ar ms shoul d be kept dur i ng weekend and
when weekend st ar t s - - >

<! ELEMENT I conMap (Type) * >
<! ELEMENT Type EMPTY >
<! ATTLI ST Type
 I con CDATA #REQUI RED
 Name CDATA #REQUI RED
>

<! ELEMENT Col or Map (St at us) * >
<! ELEMENT St at us EMPTY >
<! ATTLI ST St at us
 Name CDATA #REQUI RED
 Col or CDATA #REQUI RED
>

 74

PlugIns Agent DTD
<! ELEMENT MA- conf i g (NCS, (Syst em) *) >
<! ATTLI ST MA- conf i g
 Updat e CDATA " 180"
 Name CDATA #REQUI RED
 Type (Cr on| Daemon) " Daemon"
>
<! ELEMENT NCS EMPTY >
<! ATTLI ST NCS
 Por t CDATA " 19997"
 Host CDATA #REQUI RED
 Hear t beat CDATA " 600"
>
<! ELEMENT Syst em ((Condi t i onSet) * , (Moni t or edEl ement) *) >
<! ATTLI ST Syst em
 Cl ust er CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! ELEMENT Moni t or edEl ement (Condi t i onSet) * >
<! ATTLI ST Moni t or edEl ement
 Name CDATA #REQUI RED
 Type CDATA #REQUI RED
 Host CDATA #REQUI RED
>

<! ELEMENT Condi t i onSet (f n, (Condi t i on) +) >
<! ELEMENT f n EMPTY >
<! ATTLI ST f n
 Name CDATA " pl ug_i ns"
 Ar g CDATA #REQUI RED
 Ret Val CDATA #REQUI RED
>
<! ELEMENT Condi t i on ((appl y) +, (Act i on) *) >
<! ATTLI ST Condi t i on
 Descr i pt i on CDATA #REQUI RED
 SevLevel CDATA #REQUI RED
 St at e CDATA #REQUI RED
 Event Type CDATA #I MPLI ED
 Event Name CDATA #I MPLI ED
>
<! ELEMENT Act i on (Exec) * >
<! ATTLI ST Act i on
 I D CDATA #REQUI RED
 Type CDATA #REQUI RED
 Host CDATA #REQUI RED
 Gap CDATA #I MPLI ED
 Count er CDATA #I MPLI ED
 Del ay CDATA #I MPLI ED
>
<! ELEMENT Exec EMPTY >
<! ATTLI ST Exec
 Ar gument CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! - - see f or dt d - - >
<! - - see appl y dt d - - >
<! - - see act i on dt d - - >

Ping Agent DTD
<! ELEMENT MA- conf i g (NCS, (Def aul t Fi l es) ?(Syst em) *) >
<! ATTLI ST MA- conf i g
 Updat e CDATA " 180"
 Name CDATA #REQUI RED
 Type (Cr on| Daemon) " Daemon"
>
<! ELEMENT NCS EMPTY >
<! ATTLI ST NCS
 Por t CDATA " 19997"

 75

 Host CDATA #REQUI RED
 Hear t beat CDATA " 600"
>
<! ELEMENT Def aul t Fi l es (Fi l e) * >
<! ATTLI ST Def aul t Fi l es
 Type (" KnownSt at us” | Host sI nCl ust er s”) #REQUI RED
 Pat h CDATA #REQUI RED
>
<! ELEMENT Fi l e Empt y >
<! ATTLI ST Fi l e
 Name CDATA #REQUI RED
>

<! ELEMENT Syst em ((Condi t i onSet) * , (Moni t or edEl ement) *) >
<! ATTLI ST Syst em
 Cl ust er CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! ELEMENT Moni t or edEl ement (Condi t i onSet) * >
<! ATTLI ST Moni t or edEl ement
 Name CDATA #REQUI RED
 Type CDATA #REQUI RED
 Host CDATA #REQUI RED
>

<! ELEMENT Condi t i onSet (f n, (Condi t i on) +) >
<! ELEMENT f n EMPTY >
<! ATTLI ST f n
 Name (i sNet wor kDown | i sUp | get Load) #REQUI RED
 Ar g CDATA #REQUI RED
 Ret Val CDATA #REQUI RED
>
<! ELEMENT Condi t i on ((appl y) +, (Act i on) *) >
<! ATTLI ST Condi t i on
 Descr i pt i on CDATA #REQUI RED
 SevLevel CDATA #REQUI RED
 St at e CDATA #REQUI RED
 Event Type CDATA #I MPLI ED
 Event Name CDATA #I MPLI ED
>
<! ELEMENT Act i on (Exec) * >
<! ATTLI ST Act i on
 I D CDATA #REQUI RED
 Type CDATA #REQUI RED
 Host CDATA #REQUI RED
 Gap CDATA #I MPLI ED
 Count er CDATA #I MPLI ED
 Del ay CDATA #I MPLI ED
>
<! ELEMENT Exec EMPTY >
<! ATTLI ST Exec
 Ar gument CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! - - see f or dt d - - >
<! - - see appl y dt d - - >
<! - - see act i on dt d - - >

Swatch Agent DTD
<! ELEMENT Swat chAgent Conf i g (NCS , (Fi l e | I f _Fi l e | For _Fi l e | Act i on) *) >
<! ATTLI ST Swat chAgent Conf i g
 Scan CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! ELEMENT Fi l e (Syst em | For _Syst em | I f _Syst em) * >
<! ATTLI ST Fi l e
 Fi l et ype (mul t i host | pl ai n) " pl ai n"

 76

 Fi l e CDATA #REQUI RED >
<! ELEMENT Moni t or edEl ement (ReRul e| I f _ReRul e| For _ReRul e) * >
<! ATTLI ST Moni t or edEl ement
 Type CDATA #REQUI RED
 Host CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! ELEMENT Act i on (Exec) * >
<! ATTLI ST Act i on
 Type CDATA #REQUI RED
 I D CDATA #REQUI RED
 Local CDATA #REQUI RED
>
<! ELEMENT ReRul e EMPTY >
<! ATTLI ST ReRul e
 Regexp CDATA #REQUI RED
 St at e CDATA #REQUI RED
 SevLevel CDATA #REQUI RED
 Event Val ue CDATA #I MPLI ED
 Event Name CDATA #REQUI RED
 Event Type CDATA #REQUI RED
 Descr i pt i on CDATA #I MPLI ED
>
<! ELEMENT Syst em (Moni t or edEl ement | I f _Moni t or edEl ement | For _Moni t or edEl ement) * >
<! ATTLI ST Syst em
 Cl ust er CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! ELEMENT NCS EMPTY >
<! ATTLI ST NCS
 Por t CDATA #REQUI RED
 Host CDATA #REQUI RED
 Hear t beat CDATA #REQUI RED
>
<! ELEMENT Exec EMPTY >
<! ATTLI ST Exec
 Ar gument CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! ELEMENT For _Syst em (I f _Syst em| For _Syst em| Syst em) * >
<! ATTLI ST For _Syst em
 Each CDATA #REQUI RED
 I n CDATA #REQUI RED
 Name CDATA #REQUI RED
 Fi l ename CDATA #I MPLI ED
 Var CDATA #REQUI RED
>
<! ELEMENT I f _Syst em (I f _Syst em| For _Syst em| Syst em) * >
<! ATTLI ST I f _Syst em
 Cond CDATA #REQUI RED
>
<! ELEMENT For _Moni t or edEl ement (
I f _Moni t or edEl ement | For _Moni t or edEl ement | Moni t or edEl ement) * >
<! ATTLI ST For _Moni t or edEl ement
 Each CDATA #REQUI RED
 I n CDATA #REQUI RED
 Name CDATA #REQUI RED
 Fi l ename CDATA #I MPLI ED
 Var CDATA #REQUI RED
>
<! ELEMENT I f _Moni t or edEl ement (
I f _Moni t or edEl ement | For _Moni t or edEl ement | Moni t or edEl ement) * >
<! ATTLI ST I f _Moni t or edEl ement
 Cond CDATA #REQUI RED
>
<! ELEMENT For _Fi l e (I f _Fi l e| For _Fi l e| Fi l e) * >
<! ATTLI ST For _Fi l e
 Each CDATA #REQUI RED
 I n CDATA #REQUI RED
 Name CDATA #REQUI RED
 Fi l ename CDATA #I MPLI ED
 Var CDATA #REQUI RED
>

 77

<! ELEMENT I f _Fi l e (I f _Fi l e| For _Fi l e| Fi l e) * > <! ATTLI ST I f _Fi l e
 Cond CDATA #REQUI RED
>
<! ELEMENT For _ReRul e (I f ReRul e| For _ReRul e| ReRul e) * >
<! ATTLI ST For _ReRul e
 Each CDATA #REQUI RED
 I n CDATA #REQUI RED
 Name CDATA #REQUI RED
 Fi l ename CDATA #I MPLI ED
 Var CDATA #REQUI RED
>
<! ELEMENT I f _ReRul e (I f _ReRul e| For _ReRul e| ReRul e) * >
<! ATTLI ST I f _ReRul e
 Cond CDATA #REQUI RED
>

URL Agent DTD
<! ELEMENT URLAgent Conf i g (NCS, (I f _Syst em| For _Syst em| Syst em| Act i on) +) >
<! ATTLI ST URLAgent Conf i g
 Scan CDATA #REQUI RED
 name CDATA #REQUI RED
>
<! ELEMENT NCS EMPTY >
<! ATTLI ST NCS
 Por t CDATA #REQUI RED
 Host CDATA #REQUI RED
 Hear t beat CDATA #REQUI RED
>
<! ELEMENT Syst em (I f _Moni t or edEl ement | For _Moni t or edEl ement | Moni t or edEl ement) + >
<! ATTLI ST Syst em
 Cl ust er CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! ELEMENT Moni t or edEl ement (NGOP_URL | I f _URLFai l Rul e | For _URLFai l Rul e | URLFai l Rul e
) * >
<! ATTLI ST Moni t or edEl ement
 Name CDATA #REQUI RED
 Type CDATA #REQUI RED
 Host CDATA #REQUI RED
>

<! ELEMENT URLFai l Rul e EMPTY >
<! ATTLI ST URLFai l Rul e
 hr ef CDATA #REQUI RED
 RegExp CDATA #REQUI RED
 Act i onLocal CDATA #I MPLI ED
>
<! ELEMENT NGOP_URL EMPTY >
<! ATTLI ST NGOP_URL
 Act i onLocal CDATA #I MPLI ED
>
<! ELEMENT Act i on (Exec) * >
<! ATTLI ST Act i on
 Type CDATA #REQUI RED
 I D CDATA #REQUI RED
 Local CDATA #REQUI RED
>
<! ELEMENT Exec EMPTY >
<! ATTLI ST Exec
 Ar gument CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! ELEMENT For _Syst em (I f _Syst em| For _Syst em| Syst em) * >
<! ATTLI ST For _Syst em
 Each CDATA #REQUI RED
 I n CDATA #REQUI RED
 Name CDATA #REQUI RED
 Fi l ename CDATA #I MPLI ED

 78

 Var CDATA #REQUI RED >
<! ELEMENT I f _Syst em (I f _Syst em| For _Syst em| Syst em) * >
<! ATTLI ST I f _Syst em
 Cond CDATA #REQUI RED
>
<! ELEMENT For _Moni t or edEl ement (
I f _Moni t or edEl ement | For _Moni t or edEl ement | Moni t or edEl ement) * >
<! ATTLI ST For _Moni t or edEl ement
 Each CDATA #REQUI RED
 I n CDATA #REQUI RED
 Name CDATA #REQUI RED
 Fi l ename CDATA #I MPLI ED
 Var CDATA #REQUI RED
>
<! ELEMENT I f _Moni t or edEl ement (
I f _Moni t or edEl ement | For _Moni t or edEl ement | Moni t or edEl ement) * >
<! ATTLI ST I f _Moni t or edEl ement
 Cond CDATA #REQUI RED
>
<! ELEMENT For _URLFai l Rul e (I f _URLFai l Rul e| For _URLFai l Rul e| URLFai l Rul e) * >
<! ATTLI ST For _URLFai l Rul e
 Each CDATA #REQUI RED
 I n CDATA #REQUI RED
 Name CDATA #REQUI RED
 Fi l ename CDATA #I MPLI ED
 Var CDATA #REQUI RED
>
<! ELEMENT I f _URLFai l Rul e (I f _URLFai l Rul e| For _URLFai l Rul e| URLFai l Rul e) * >
<! ATTLI ST I f _URLFai l Rul e
 Cond CDATA #REQUI RED
>

<Default_File> DTD
<! ELEMENT NGOPConf i g (Def aul t _Fi l e, (Host sI nCl ust er s| KnownSt at us| Ser vi ceCl ass)) >
<! ELEMENT Def aul t _Fi l e EMPTY >
<! ELEMENT I f (#PCDATA| El se) * >
<! ATTLI ST I f
 Cond CDATA #REQUI RED
>
<! ELEMENT El se (#PCDATA) * >
<! ELEMENT For (#PCDATA) * >
<! ATTLI ST For
 Each CDATA #REQUI RED
 I n CDATA #REQUI RED
 Name CDATA #REQUI RED
 Var CDATA #REQUI RED
 Fi l ename CDATA #I MPLI ED
>

<! ELEMENT Host sI nCl ust er s (Cl ust er) + >
<! ELEMENT Ser vi ceType (Host * | appl y+) >
<! ATTLI ST Ser vi ceType
 Name (24by7| 8t o17by5 | 8t o17by7| 8t o00by7| 0by0) #REQUI RED
>
<! ELEMENT Ser vi ceCl ass (Ser vi ceType) * >
<! ELEMENT KnownSt at us (St at us) * >
<! ELEMENT St at us (Out Of Ser vi ceI nt er val) * >
<! ATTLI ST St at us
 Name (bad| t est | i n_r epai r) #REQUI RED
>
<! ELEMENT Out Of Ser vi ceI nt er val (Syst em | Moni t or edEl ement | Host | Cl ust er) + >
<! ATTLI ST Out Of Ser vi ceI nt er val
 St ar t Dat eTi me CDATA " None"
 EndDat eTi me CDATA " None"
 User CDATA #I MPLI ED

 79

 Descr i pt i on CDATA #I MPLI ED Cr on CDATA #I MPLI ED
>
<! ELEMENT Host EMPTY >
<! ATTLI ST Host
 Name I D #REQUI RED
>
<! ELEMENT Cl ust er (Ser vi ceType | Cl ust er) * >
<! ATTLI ST Cl ust er
 Name I D #REQUI RED
>
<! ELEMENT Syst em EMPTY>
<! ATTLI ST Syst em
 Cl ust er CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! ELEMENT Moni t or edEl ement EMPTY >
<! ATTLI ST Moni t or edEl ement
 Syst em CDATA #REQUI RED
 Host CDATA #REQUI RED
 Cl ust er CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! - see appl y dt d - - ! >
<! - see f or dt d - - ! >

Monitored Hierarchy DTD

<! ELEMENT NGOPHi er ar chy (Syst emVi ew| Syst em) * >
<! ELEMENT Syst emVi ew (Syst emVi ew| Syst em) +>
<! ATTLI ST Syst emi Vi ew
 Name I D #REQUI RED
 Ref Rul e CDATA #I MPLI ED
>
<! ELEMENT Syst em (Moni t or edEl ement) +>
<! ATTLI ST Syst em
 Cl ust er CDATA #REQUI RED
 Name CDATA #REQUI RED
 Ref Rul e CDATA #I MPLI ED
>
<! ELEMENT Moni t or edEl ement EMPTY >
<! ATTLI ST Moni t or edEl ement
 Host CDATA #REQUI RED
 Name CDATA #REQUI RED
 Type CDATA #I MPLI ED
 Ref Rul e CDATA #I MPLI ED
>

<StatusRulesSet> DTD
<! ELEMENT NGOPRul e (St at usRul esSet) * >
<! ELEMENT St at usRul esSet (DependLi st ?, (Genr i cRul e | DependRul e) *) >
<! ATTLI ST St at usRul esSet
 I D CDATA #REQUI RED
>
<! ELEMENT DependLi st (Gr oup) * >
<! ELEMENT Gr oup (For | Syst em) * >
<! ATTLI ST Name
 Name CDATA #REQUI RED
>
<! - - see syst em dt d i n hi er ar chy - - >
<! ELEMENT Gener i cRul e (appl y, Act i on) >
<! ATTLI ST Gener i cRul e
 Pr i o CDATA #REQUI RED
 St at us (None| Good| Unknown| Undef i ned| War ni ng| Er r or | Bad) #REQUI RED

 80

 SevLevel (None| Good| Unknown| Undef i ned| War ni ng| Er r or | Bad) ' Good'
 Dsc CDATA #I MPLI ED
>

<! ELEMENT DependRul e (appl y, Act i on) >
<! ATTLI ST DependRul e
 Pr i o CDATA #REQUI RED
 St at us (None| Good| Unknown| Undef i ned| War ni ng| Er r or | Bad) #REQUI RED
 SevLevel (None| Good| Unknown| Undef i ned| War ni ng| Er r or | Bad) ' Good'
 Dsc CDATA #I MPLI ED
>
<! - - see f or dt d - - >
<! - - see appl y dt d - - >
<! - - see act i on dt d - - >

Web Gui DTD
<! ELEMENT webmoni t or _cf g (LS , WebGui) >
<! ELEMENT LS EMPTY >
<! ATTLI ST LS
 Host CDATA #REQUI RED
 Por t CDATA #REQUI RED
>
<! ELEMENT WebGui EMPTY >
<! ATTLI ST WebGui
 Type (- f cgi | - cgi | - st andal one)
>

Java Monitor DTD
<! ELEMENT j moni t or _cf g (l s, r ol es) >
<! ELEMENT l s EMPTY >
<! ATTLI ST l s
 Por t CDATA #REQUI RED
 Host CDATA #REQUI RED
>

CFMS Configuration File DTD
<! ELEMENT cl i ent _cf g (Cl i ent | Cf gXml) >
<! ELEMENT Cl i ent EMPTY >
<! ATTLI ST Cl i ent
 Host CDATA #REQUI RED
 Por t CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! ELEMENT Cf gXml EMPTY >
<! ATTLI ST Cf gXml
 CvsRoot CDATA #REQUI RED
 Name CDATA #REQUI RED
 Ver si on CDATA #REQUI RED
 CvsRep CDATA #REQUI RED
>

 81

Archiver Configuration File DTD
<! ELEMENT Ar chi ver Conf i g (Por t , Ar chi ver Host , LogPat h, Request Di r ect or y,
Er r or Di r ect or y, DBI nt er Sl eepI nt er val) >
<! ELEMENT Por t EMPTY >
<! ELEMENT Ar chi ver Host (Or aPW, Or aUser , Or aI nst ance) #REQUI RED >
<! ELEMENT LogPat h EMPTY >
<! ELEMENT Request Di r ect or y EMPTY >
<! ELEMENT Er r or Di r ect or y EMPTY >
<! ELEMENT DBI nt er Sl eepI nt er val EMPTY >
<! ELEMENT Or aPW EMPTY >
<! ELEMENT Or aUser EMPTY >
<! ELEMENT Or aI nst ance EMPTY >

Action Server Configuration File DTD
<! - - Act i on Ser ver def i ni t i ons st ar t s - - >
<! ELEMENT AS_cf g (Cl i ent | Cf gXml | Act i onObj ect Li st) + >
<! ATTLI ST AS_cf g
 DebugLevel CDATA " 1"
>
<! - - Debug Level f r om 0 t o 6 - - >
<! ELEMENT Cl i ent EMPTY >
<! ATTLI ST Cl i ent
 Por t CDATA " 19996"
 Name (NCSCl nt | CFMSCl nt) " NCSCl nt "
 Host CDATA " l ocal host "
>
<! - - NCSCl nt Cl i ent connect s t o NCS - - >
<! - - CFMSCl nt connect s t o CFMS - - >
<! ELEMENT Cf gXml EMPTY >
<! ATTLI ST Cf gXml
 ExcDi r CDATA " scr i pt s"
 Wr kDi r CDATA " . ngop_act i on"
 CvsRep CDATA " conf i gxml "
 CvsRoot CDATA " : pser ver : ngop@ngop. f nal . gov: / home/ ngop/ Reposi t or y"
 Rol e CDATA " def aul t "
>
<! ELEMENT Act i onObj ect Li st (Moni t or edEl ement , Syst em, Cl ust er , Host) * >
<! ELEMENT Host EMPTY >
<! ATTLI ST Host
 Name I D #REQUI RED
>
<! ELEMENT Cl ust er EMPTY >
<! ATTLI ST Cl ust er
 Name I D #REQUI RED
>
<! ELEMENT Syst em EMPTY>
<! ATTLI ST Syst em
 Cl ust er CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! ELEMENT Moni t or edEl ement EMPTY >
<! ATTLI ST Moni t or edEl ement
 Syst em CDATA #REQUI RED
 Host CDATA #REQUI RED
 Cl ust er CDATA #REQUI RED
 Name CDATA #REQUI RED
>
<! - - Act i on Ser ver def i ni t i ons ends - - ><! ELEMENT AS_cf g (Cl i ent +, Cf gXml) >

<Authorization_File> DTD
<! ELEMENT NGOPAct i on (Aut hor i zat i on_Fi l e) >
<! ELEMENT Aut hor i zat i on_Fi l e (Aut hor i zedGr oup) * >
<! ELEMENT Aut hor i zedGr oup (User) * >
<! ATTLI ST Aut hor i zedGr oup
 I D CDATA #REQUI RED
>

 82

<! ELEMENT User EMPTY > <! ATTLI ST User
 Name CDATA #REQUI RED
>

<Action_File> DTD

<! ELEMENT NGOPAct i on (Act i on_Fi l e) >
<! ELEMENT Act i on_Fi l e (Act i on) * >
<! ELEMENT Act i on (Host) * >
<! ATTLI ST Act i on
 I D CDATA #REQUI RED
>
<! ELEMENT Host (Aut hor i zedGr oup , Exec) * >
<! ATTLI ST Host
 Name CDATA #REQUI RED
>
<! ELEMENT Exec EMPTY >
<! ATTLI ST Exec
 Pat h CDATA #REQUI RED
>
<! ELEMENT Aut hor i zedGr oup EMPTY >
<! ATTLI ST Aut hor i zedGr oup
 I D CDATA #REQUI RED
>

